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TECHNICAL SUMMARY 
 
This project provides a comprehensive understanding of rail-trespassing crashes. Specifically, 
the project explores injury severity in rail-trespassing crashes that occurred at highway-rail grade 
crossings and non-crossings. The authors examined the role of pre-crash behaviors, socio-
demographics, time of crash, location and traffic controls where crash occurred on injury 
severity. Relying on the accident and incident data as well as inventory and highway-rail 
crossing data maintained by the Office of Safety Analysis of the Federal Railroad 
Administration, the project is split into three efforts: 
 The first effort examines spatial patterns of rail-trespassing crashes at non-crossings, 
using 10 years of crash data. Given the geocode information in rail-trespassing crash data, this 
part of the study visualizes the distribution of rail-trespassing crashes and analyzes the spatial 
correlates of injury severity with related factors (e.g., crash time, individual attributes, darkness, 
crash location and pre-crash behaviors) across the United States. The results indicate that: 1) 
higher rail-trespassing fatality chances, given a crash, are associated significantly with pre-crash 
behaviors, especially lying and sleeping on rail tracks. Seniors are more likely to be killed in rail-
trespassing crashes while youths are less likely, compared with adults; 2) a critical finding is 
uncovering spatial variations in the correlates, given the variations in spatial locations of crashes. 
The study finds that relationships between crash injury severity and certain variables from one 
location cannot be generalized to other locations. By visualizing the associations to show where 
certain pre-crash actions are associated with higher probability of trespassing crash injury, this 
project provides information that can help stakeholders focus attention on critical factors in 
geographies that show higher risks of fatalities in crashes. This project provides insights into 
countermeasures that can be targeted regionally to reduce higher risk trespassing behaviors. 

The second effort analyzes rail-pedestrian and bicyclist trespassing crashes at highway-
rail grade crossings to non-crossings by comparing them. The research effort focuses on the 
effects of pre-crash behaviors on crash injury severity. The analysis was done separately for 
highway-rail grade trespassing crashes and non-crossing trespassing crashes. The project 
explored differences in injury and correlates of trespasser injury severity between crossings and 
non-crossings. Results show that: 1) lying or sleeping on or near tracks is associated with higher 
chance of fatal injury at both crossings and non-crossings, but more so at rail grade crossings; 2) 
sitting/standing/bending/stooping are more injurious at non-crossings, while crossing/crawling 
are more injurious at highway-rail grade crossings; 3) crashes occurring during darkness and 
summer are more injurious at grade crossings; 4) the trends show more fluctuations for crossing 
crashes, but relatively more stability for non-crossing crashes over a 10 year period (2005-2014). 
The study points to using different types of countermeasures in order to reduce injuries at rail 
grade crossings and non-crossings. 
 The third effort focuses on injury outcomes at highway-rail grade crossings, expanding 
the analysis from non-motorized trespassers to include motorized trespasser crashes. Path 
analysis quantifies the direct and indirect associations of passive control (crossbucks and stop 
signs) and active controls (gates, flashing lights, audible warnings and highway signals) with 

3 | 8 0  
 



pre-crash behaviors and injury severity. The study reveals that: 1) some crossing controls (e.g., 
presence of gates at crash sites) do not have a significant direct association with injury severity, 
but are indirectly associated with injury severity through pre-crash behaviors—the presence of 
gates is indirectly associated with lower injury severity; 2) more broadly, given a crash, active 
controls were associated with lower driver injuries compared with passive controls. This project 
indicates that understanding key correlates of injury severity can come through understanding of 
pre-crash behaviors. The results emphasize the need to develop a deeper understanding of 
motorists’ gate-violation behaviors at highway-rail grade crossings. Indeed, pre-crash behaviors 
are important predictors of rail-trespassing safety. This study also showed that safety 
improvement strategies can be made more effective by customizing them to specific regions in 
the United States. 
  
NOTE: 
The project has resulted in the following publications and presentations: 

1. Wang, X., Liu, J., Khattak, A. J., & Clarke, D. (2016). Non-crossing rail-trespassing 
crashes in the past decade: A spatial approach to analyzing injury severity. Safety 
Science, 82, 44-55. (TRB paper # 15-0955, Presented at the Transportation Research 
Board, National Academies, Washington, D.C., 2015.) 

2. Zhang, M., A. Khattak, J. Liu, & D. Clarke, A comparative study of rail-
pedestrian/bicyclist trespassing crash injury severity at highway-rail grade crossings and 
non-crossings. Presented at 2015 Road Safety & Simulation International Conference, 
Orlando, FL, 2015. 

3. Liu, J., Khattak, A. J., Richards, S. H., & Nambisan, S. (2015). What are the differences 
in driver injury outcomes at highway-rail grade crossings? Untangling the role of pre-
crash behaviors. Accident Analysis & Prevention, 85, 157-169. (TRB paper # 15-0959, 
Presented at the Transportation Research Board, National Academies, Washington, D.C., 
2015.) 

4. Liu J., A. Khattak & S. Richards, Examining motorist gate-violation behaviors at 
highway-rail grade crossings using geo-spatial modeling integrated with path analysis: a 
screening tool for safety improvement zones. Presented at 2015 Road Safety & 
Simulation International Conference, Orlando, FL, 2015. 
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NON-CROSSING RAIL-TRESPASSING CRASHES IN THE PAST DECADE: A 
SPATIAL APPROACH TO ANALYZING INJURY SEVERITY 

 
Xin Wang, Jun Liu, Asad Khattak, and David Clarke 

The University of Tennessee, Knoxville 
 

Abstract: Transportation professionals have long recognized the harm of trespassing 
along railway rights-of-way. However, the non-crossing rail trespassing issue has 
received less attention than highway-rail grade crossing crashes, despite the fact that 
nearly 8,800 rail-trespassing crashes occurred on non-crossing rail tracks during the past 
decade, with a large number of them resulting in fatality. Also, geographic and socio-
demographic diversity within the US imply that trespassing crash severity and its 
correlates may vary across geographic entities or regions. The purpose of this paper is to 
investigate these issues using rail-trespasser crash data maintained by Federal Railroad 
Administration (N=8,794 over 2004 to 2013). The unique aspects of the study are the 
development of a framework that explores correlates of injury severity in crashes, and 
applies appropriate analysis methods. Specifically, using rigorous spatial modeling 
methods (Geographically Weighted Regression), the study uncovered spatial variations in 
correlates between rail-trespassing injury and revealed contributing factors. The factors 
include personal attributes of individuals, environmental and location attributes, time of 
crash, and pre-crash behaviors. The results show that non-crossing trespass crashes are 
generally severe with 52.1% involving a fatality. Pre-crash behaviors were found to be 
key factors showing significant associations with the probability of rail-trespassing 
injury, especially lying or sleeping (on or near tracks). Fundamentally, the basic 
assumption of spatial stationarity in traditional regression models does not fully hold in 
the situation explored. Correlates of injury severity are found to be non-stationary across 
space. Therefore, regional considerations in specific situations should guide the 
implementation of treatments and policies. 

 
Keywords: rail-trespassing, crash, geographically weighted regression, injury severity, spatial 
pattern 
 
 

SECTION 1: INTRODUCTION 
 
While crashes at highway-rail grade crossings with vehicles, pedestrians, bicyclists and other 
users are a continuing societal concern, a growing concern is train crashes with trespassers on 
railroad rights-of-way other than designated grade crossings. Railway trespassers are individuals 
who commit the act of trespassing on the railway property without the permission of the property 
owner, costing billions of dollars annually in injuries and fatalities. USDOT/FHWA guidance 
recommends that non-motorist-crossing safety should be considered at all rail grade crossings to 
minimize pedestrian crossing time and avoid trapping pedestrians between sets of tracks. But 
there is no such safety guidance at non-crossing trails. Safety at non-crossings is lightly 
researched and needs to be investigated further. Trespassers not only endanger themselves but 
also expose railway staff and passengers to unnecessary delays and strain public services. Rail-
trespasser crashes are particularly problematic, as they are associated with more fatalities than 
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any other form of railway-related crashes (Lobb, 2006). In addition, individuals are more likely 
to be killed or irreparably injured in crashes with trains, compared to the crashes with highway 
vehicles (Evans, 2003). With rail-trespasser crashes a key concern in the future (due to a 
resurgence in goods movement through trains in the US), the problem may get worse if 
appropriate actions are not taken, e.g., adding surveillance and enhancing public education. 

Little is known about people who violate or trespass by crossing, walking or taking other 
actions along tracks at places other than a designated level crossing. Most trespassers are 
pedestrians, but some can be people who driving or riding a bike, ATV, dirt bike, snowmobile, 
vehicles, etc. Investigation into the characteristics of trespassers as well as their pre-crash actions 
could help in the development of countermeasures to reduce the number of crashes. 

To provide valuable information to decision-makers and take advantage of the expansion 
in computation power, availability of geo-referenced data, and geographic information systems, 
this study investigates injuries in rail-trespassing crashes that occur along railway tracks. It 
explores 1) how rail-trespassing crashes are distributed spatially in the United States; 2) the 
correlates of injury severity to trespassers that include personal attributes, environmental and 
location attributes (e.g., railroad yard), time of crash and trespasser actions, i.e., pre-crash 
behaviors; 3) how such associations are distributed across the country, given the geographical 
and social diversity. 
 
 

SECTION 2: LITERATURE REVIEW 
 
Much of the previous research has focused on rail-pedestrian and bicyclist crashes, especially on 
crashes at highway–rail grade crossings (Khattak and Luo, 2011; Metaxatos and Sriraj, 2013). 
The motivations for trespassers to cross railway tracks at improper locations or their presence in 
other railroad right-of-way areas vary substantially. Taking the shortest or most convenient route 
by crossing tracks is one of the most common reasons for pedestrian trespassing; people in one 
of the study reported that the safe, legal route via an overbridge took more time and effort and 
hence they decided to trespass (Lobb et al., 2001).  

A macabre motivation may be the desire to commit suicide. In European countries, most 
of the rail-pedestrian crashes turned out to be suicides (Van Houwelingen and Beersma, 2001; 
Silla and Luoma, 2012a, b). In the United States, there is also strong speculation that a 
substantial amount of rail-pedestrian crashes may be suicides (Savage, 2007). But perhaps 
suicides in rail crashes are lower in the US than in some of the other countries that restrict access 
to firearms.   

Socio-demographics are usually used to draw the picture of train-pedestrian crashes, 
based on the possibility that people belonging to certain socio-economic groups may be more 
likely to be involved in trespassing crashes. Children and senior trespassers are vulnerable, 
though relatively few such crashes involved children under the age of 10 or seniors above the age 
of 60 (Pelletier, 1997; Silla and Luoma, 2012a).  Summarizing a decade of train-pedestrian 
crashes in Charleston, South Carolina, Cina et al. found that young males accounted for a 
majority of rail-pedestrian crashes in their data (Cina et al., 1994). They further found that 80% 
of such crashes involved blood alcohol levels greater than 99 mg/dL. Pelletier reported that 
trespasser fatalities typically involved unmarried males with less than a high school education 
(Pelletier, 1997). He also pointed out the problem of alcohol intoxication in such trespassers. 
Lobb et al. conducted a self-reported survey to investigate the behaviors of individuals crossing 
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the railway (Lobb et al., 2001). Their findings suggested that teenagers and males have more 
dangerous attitudes and are more likely to walk across railroad tracks.  

The time of rail-pedestrian crash occurrence is also a concern in the literature. Silla et al., 
analyzed documented rail-pedestrian crashes on the Finnish railway network and reported a large 
portion of crashes occurred in the afternoon and evening and a great number of crashes occurred 
on weekends. Also summer and winter time had more such crashes than spring and fall months 
(Silla and Luoma, 2012a). Pelletier found that fatality-involved crashes typically occurred at 
night at the end of a week (Pelletier, 1997). Lerer et al., report that rail-pedestrian crashes 
occurred at peak commute times in Cape Town, South Africa (Lerer and Matzopoulos, 1996). 
Investigations of crash locations have revealed that rail-pedestrian crashes typically occurred in 
areas with dense population and train activity. Such places included the vicinity of residential 
communities and train stations and rail yards (Silla and Luoma, 2012a). 

Researchers also have found that trespasser pre-crash behaviors have a strong connection 
with the severity of injury. Pre-crash behaviors include walking, running, standing, sitting, lying, 
etc. in railroad rights-of-way. A study based on three-year rail-pedestrian crash records revealed 
that walking and lying were the two major pre-crash behaviors associated with trespassers 
(Savage, 2007). Another study found that pre-crash behaviors are helpful in revealing the reasons 
of the crash occurrence—a large portion of sitting or lying behaviors were strongly suspected to 
be suicides or intoxicated individuals (Savage, 2007; Silla and Luoma, 2012a).   

Prevention of the rail-pedestrian crashes through treatments has been investigated in the 
literature (Pelletier, 1997; CDCP 1999; Lobb, 2006; Savage, 2007; Liu et al., 2011; Silla and 
Luoma, 2011, 2012b, a). Mohanty et al. suggested surveillance and public education as useful 
ways to decreasing the frequency of rail-pedestrian crashes (Mohanty et al., 2007). Surveillance 
in particular places that include typical trespassing crash locations, rail yards and highway-rail 
grade crossings can help. However, it is impractical and cost-prohibitive to monitor all such 
places. Public education may help people realize the danger of crossing tracks illegally (Lobb et 
al., 2001). Studies by Mok and Savage indicated that increasing the amount of public educational 
activities on railway safety can be effective in reducing the number of train-motor vehicle 
crashes at highway-rail crossings, through investigating crash reductions after a campaign called 
Operation Lifesaver initiated in the 1970s (Mok and Savage, 2005; Savage, 2006). However, a 
follow-up study by Savage did not show a relationship between trespassing crashes and the 
implementation of Operation Lifesaver, owing to two potential reasons: 1) there was 
simultaneous growth in Operation Lifesaver programs and railroad abandonments (which would 
decrease train activity and crashes), and 2) Operation Lifesaver mainly focused on risks at grade 
crossings rather than non-crossings (Savage, 2007). Savage further discussed the associations of 
educational activities with trespassing behaviors and suggested Operation Lifesaver to redirect 
some of their actives to places (school and civic groups) located close to the tracks (Savage, 
2007). Studies have investigated the effects of three countermeasures (landscaping, building a 
fence and prohibitive signs) on the frequency of trespassing, and found that fencing can reduce 
frequency of trespassing by 94.6% (Silla and Luoma, 2011).  

Nearly all the above mentioned studies have focused on trespassing crash frequency 
instead of the crash severity (harm suffered by the trespasser) given a crash, except a study 
conducted by Pelletier (1997). While a few previous studies have investigated non-crossing 
trespassing crashes, even fewer have taken advantage of the available computation power that 
allows more data-intensive spatial analysis of rail-pedestrian crashes. While widely used to 
assess highway crashes (Levine et al., 1995; Loo, 2009; Plug et al., 2011), spatial analysis has 
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not received a large application in rail trespassing studies. This is partially due to the limited 
availability of geo-coded rail-trespassing data. However, this situation has improved 
considerably because the Federal Railroad Administration (FRA) now includes geocode 
information in its rail-trespassing data, making it possible to apply location-aware modeling 
methodology to help demonstrate the spatial patterns of rail-trespassing and understand the 
factors associated with rail-trespassing crash outcomes.  Given that rail-trespassing is a national 
issue, it is of particular interest to use robust spatial visualization and state-of-art modeling 
methods to analyze relevant data.  

 
 

SECTION 3: APPROACH AND METHODOLOGY 
  
After obtaining the relevant data, the study first conducted univariate analyses for exploring the 
distribution of variables and descriptive statistics. They provided information about outliers in 
the data.  Data were visualized using spatial statistics methods. Next, bivariate analyses helped 
understand first-order correlations in the data and understand simple hypothesized relationships. 
In addition, multivariate statistical models, in particular global and local regression models, were 
estimated to explore key relationships. The role of pre-crash behaviors and actions of trespassers 
was of interest and how these lead to certain types of collisions, and hence injuries. The severity 
measure used was whether the injuries were fatal or non-fatal.  The methods are described in 
greater detail below.  
 
3.1 Visualizing Non-crossing Rail-Trespassing Crashes  
 
Visualization and analysis of kernel density can improve our understanding of spatial distribution 
of railway track trespassing at non-crossings. A distribution density analysis is used to calculate 
the density of trespassing crashes in a search radius. Therefore it can show where trespassing 
crashes are concentrated. Kernel density is used in this paper. 

The kernel function K determines the shape of the bumps while the radius h determines 
their width (Silverman 1986). The incident density is used to create a surface showing the spatial 
distribution of trespassing crashes (fatal and/or non-fatal) throughout the country. The kernel 
density function ( )xf


 is described in Equations 1 and 2.  

 
                                                                                                                    
                                                                                              (Equation 1) 
         
Where:   n = sample size 
               h = bandwidth parameter (kernel radius) 
   x = Location of crash around which kernel is centered 
              Xi = Observed trespass crashes in the kernel 
 

The function K(x) will be a symmetric probability density function–the normal density, 
for instance, or Gaussian function (Shown in Equation 2) with mean zero and variance one. 

                                                                                    
                                                                                 (Equation 2)                                                           
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3.2 Model structure 
 
A-priori, given a rail-trespassing crash, fatality (vs. non-fatal injury) will likely be associated 
with lower visibility (measured by darkness-a binary variable), certain dangerous pre-crash 
behaviors (such as lying on or near tracks, walking on or near tracks, sitting or standing, driving, 
riding a bicycle on railway tracks, etc.), whether the track is located in a yard, people at higher 
risk (such as young or senior, derelicts, drunk or intoxicated individuals), and the crash location 
type is rural (as opposed to urban or suburban). Figure 1 shows the different types of risky 
trespassing actions that are exhibited along railway tracks. 

A logistic model, referred to as the global model, was estimated for testing these 
hypotheses: 
  
Y = β0 + β 1 (dark) + β 2 (pre-crash action)  
          + β 3 (location) + β 4 (personal attributes) + β 5 (season) + ε                 (Equation 3) 
           
            𝑌𝑌 = 𝐿𝐿𝐿𝐿 � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)

1−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)� 
Prob (Fatal Injury) = Probability of trespassing fatality (0=non-fatal injury, 1=fatal 

injury) 
β  = Coefficients for variables  
ε  = Error term in Model 1. 
 
Note that, unlike studies on the crash frequency that use count data modeling techniques, 

i.e., Poisson or negative binomial models (Famoye et al., 2004; Savage, 2007; Millegan et al., 
2009; Ye et al., 2009; Russo and Savolainen, 2013; Ye et al., 2013), this study attempts to 
untangle the correlates of the trespassing injury severity, given a crash. Injury severity is coded 
as a binary variable, justifying the use of binary logistic model. 

The traditional logistic model (Model 1) estimates the average associations between 
trespassing fatality and explanatory variables, which is a “one size fits all” model and does not 
consider the possibility of spatial variations (i.e., “spatial heterogeneity”) in associations of 
variables with injury. This has two drawbacks-specifically the traditional logistic model does not 
consider that 1) the magnitude of model coefficients can change across the country; 2) the 
statistical significance of coefficients can also vary in space. This means that statistically 
significant associations in one part of the country may not necessarily hold in other parts of the 
country. For a geographically diverse country like the United States, these two assumptions may 
not hold, or at least should be tested empirically. Small local variations can justify the use of a 
global model. If local variations are relatively large, then the relationships are not stationary 
across space and local models (GWR) should be applied. Overall, the spatial model applied in 
this study captures spatial heterogeneity in associations between the rail-trespassing crash injury 
and explanatory variables. 
 
3.2 Spatial Modeling 
 
To overcome drawbacks of the traditional logistic model, a spatial model known as the 
Geographically Weighted Logistic Regression (GWLR, shown in Model 2) was estimated in this 
study. It explores geographical drifts in regression parameters. Specifically, GWLR estimates 
spatial variations of associations between dependent and explanatory variables by relaxing the 
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assumption that estimated parameters hold globally in a traditional (global) model. The 
coefficients in the spatial model are no longer fixed but vary according to their locations; 
therefore, the local GWR model takes the following form with coefficients varying for each 
location: 
 
Yi = β0i + β 1i (dark) + β 2i (pre-crash action)  
      + β 3i (location) + β 4i (personal attributes) + β 5i (season) + εi  
 
This can be written in its basic form as follows: 
 
 Yi = βi0 + ∑ βikxik + εi

p
k=1                                                            (Equation 4) 

 
 𝑌𝑌𝑖𝑖 = 𝐿𝐿𝐿𝐿 � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)𝑖𝑖

1−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)𝑖𝑖
� 

Prob (Fatal Injury)i = probability of trespassing injury (0=non-fatal injury, 1=fatal 
injury) for each trespassing crash location i (i = 1, 2, . . . , n, where n is the sample size: 8,794); 

𝛽𝛽𝑖𝑖0=the constant at trespassing crash location i; 
𝛽𝛽1𝑖𝑖= the parameter at trespassing crash location i for explanatory variable 𝑥𝑥𝑖𝑖𝑖𝑖; 
𝑥𝑥𝑖𝑖𝑖𝑖 = explanatory variables of the kth parameter for trespassing crash location i, 
εi = error term at trespassing crash location i,  
 
To obtain locally changing parameter estimates, instead of using all 8,794 samples for a 

global model regression, GWLR performs a regression for each trespassing crash location i using 
only a subset of the trespassing crashes that are close to i in space (this neighborhood area is 
called the “kernel”). This means a specific local model will be estimated for each trespassing 
crash location by using those samples within its kernel neighborhood. This is based on the 
assumption that crashes in close proximity share more similarity than crashes that are far away. 
The size of the kernel (defined as the distance between location i and the edge of kernel in space) 
is termed as “bandwidth.” In this sense, if a kernel with fixed bandwidth is used for every 
trespassing crash location, local sample size (the number of subsamples) for each regression 
location would be different since trespassing events are not distributed evenly in space. 
Therefore kernels with fixed bandwidth will result in large local sample sizes in those areas with 
high trespassing density, but small local sample sizes or even near zero local sample size in those 
areas with sparse trespassing events. This will cause problems in the regression model. To solve 
this problem, an adaptive kernel was used, which ensures the bandwidth was selected so that 
each regression location had the same local sample size. That means larger kernels are used for 
locations with sparse trespassing crashes in its neighborhood while small kernels are used for 
those locations with denser trespassing crashes nearby.  

Moreover, the subsamples in the kernel are not treated equally but each of them is given a 
weight which is inversely proportional to its distance from the trespassing regression location. In 
this sense, each local model is actually a weighted logistic model using the sub samples (crashes) 
in its kernel. Given that each trespassing crash is surrounded by a unique set of other trespassing 
crashes, the results of local calibration are unique to the particular location. In this regard, by 
plotting the results of these local calibrations on a map, continuous surfaces of parameter 
estimates can be generated while discontinuities and sudden changes in magnitude are 
minimized.  This makes the technique attractive for various aspects of spatial analysis, a benefit 
demonstrated by Paez and Scott (2005). GWR has been also used in the transportation field. 
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Wang and Khattak (2013) used Geographically Weighted Logistic Regression (GWLR) to 
explore spatial patterns of traveler information and travel decisions and they have found 
improvements in goodness of fit and forecasts over other model forms. Also, in transportation 
safety, Hadayeghi et al. (2009) utilized geographically weighted Poisson regression (GWPR) to 
model zonal collision counts and concluded that the local model estimation technique of GWPR 
can improve analysis of transportation networks. Park et al. (2010) used GWR to identify 
hazardous locations based on severity scores of highway crashes. As a relatively new and novel 
modeling approach, GWR is used to analyze rail-trespassing crashes. 

Instead of using GWR, the mixed-effects model can also be used for conducting similar 
analysis (correlates of injury and variations across the country), yet allowing random effects for 
different observations (McCulloch and Neuhaus, 2001; Liu et al., 2015a). Unlike GWR, which 
examines spatial variations of correlates across the space, the mixed-effects logit regression 
reveals the variations of correlates between observation groups, e.g., state-wide or county-wide. 
GWR consistently uses the same number of observations for each regression (sub-sample), while 
the mixed-effects model often uses different number of observations for each entity, e.g., state or 
county. A model may not converge for an entity that has only a few observations. A key 
advantage of GWR is that it allows regression across state borders and estimates the correlates 
within a kernel containing geographically connected observations. Both GWR and Mixed-effects 
models allow variations of correlates between observations, while GWR provides more 
flexibility in terms of variation in estimates and does not consider artificial boundaries, given 
spatially distributed observations. Thus GWR models were selected for this study. However, the 
results of mixed-effects models are also available from the authors.   

 
 

SECTION 4: DATA DESCRIPTION 
 
The Office of Safety Analysis of the Federal Railroad Administration (FRA) maintains a detailed 
national database for railroad safety information including crashes, inventory, and highway-
railroad crossing data. All railway-related crashes are documented in a safety data website 
(http://safetydata.fra.dot.gov/) and are available to the public. Ten years (2004-2013) of railway 
trespassing data were extracted for this study. Since this study concentrates on non-crossing rail-
trespassing only, crashes occurring at highway-rail grade crossings were excluded.  

The data describing each railway trespasser crash includes crash features (date, time etc.), 
crash location, limited personal attributes of the individuals (age), pre-crash behaviors (walking, 
siting, lying, driving, etc. in railroad right-of-way), injury nature (amputation, fracture, killed, 
etc.) and location (latitude and longitude, county, state). Note that limited geocode information 
was available for trespassing crash data before 2010; therefore crash data without a geocode 
were coded into the centroids of the county where the trespassing crash occurred (railroad 
mileposts that provide more accurate location information were also not available). GIS tools 
were applied to merge the railway track trespassing data, state boundary and county boundary 
(downloaded from Census.gov) and to assist with identifying darkness based on sunrise and 
sunset times by each month. The final data were verified and error checked for reasonableness. 

 
4.1 Descriptive Statistics  
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The data used in this paper include 8,797 non-crossing rail-trespassing crashes that occurred 
during the past decade (2004-2013). Table 1 shows the descriptive statistics for the variables 
used in models. Over one-half of the trespassers (52.91%, 4,590 out of 8,794 individuals) were 
killed in trespassing crashes. Most trespassers involved in crashes were adults ranging between 
17-64 years old. One-half of the trespassing crashes happened during the night and one third 
happened during the weekend. However, t-tests for differences between means of two groups do 
not show significantly different effects (5% level) of nighttime and daytime on trespassing injury 
severity (getting hit by a train seems to be uniformly bad irrespective of day or night). Also, 
there is no significant difference between weekdays and weekends regarding trespassing injury 
severity–a result that is inconsistent with a previous study (Silla and Luoma, 2012a).  

This study considers the interaction between trespassing behaviors and the land use. A 
variable termed “Land Use Mix Index,” was included in the analysis. The index was developed 
by Environmental Protection Agency (EPA) to capture the land use mix entropy level, which 
varies from 0 (homogeneous land use, such as in rural areas or suburban subdivisions) to 1 (most 
mixed, such as diverse city centers) land use (GeoDa Center, 2015). The land-mix index is 
calculated based on how different land development with various densities are mixed, e.g., 
developed open space, developed low intensity, developed medium intensity, developed high 
intensity, etc. Only one county in Texas has zero mix use which contains developed open space 
only.  

 Non-crossing trespassing crashes happened most frequently in situations when the 
individual was lying or sleeping, sitting or standing, walking or running, driving or riding on 
railway tracks. Crashes that involve lying or sleeping on tracks are particularly noteworthy as 
they account for about 23.35% of all trespassers. While some of them may involve suicide, such 
crashes cannot be directly linked to suicides. Notably, suicide cases are judged by the Coroners 
or medical examiners.  FRA regulations did not require railways to report suicides so there is no 
system to reconcile the FRA trespasser database with local records from Coroners or medical 
examiners (Savage, 2007). An early FRA report (by Cadle Creek Consulting, 2008) analyzing 
data from 2002-2004 with records from local coroners and medical examiners suggests that 
about 20% of the deaths in the database were suicides. As a result of the Rail Safety 
Improvement Act of 2008 (RSIA), in June 2011 FRA began to collect incident reports of 
suicides as specified by the revised Code of Federal Regulations (CFR) and reflected in the FRA 
Guide for Preparing Accident/Incident Reports (Federal Railroad Administration, 2011). A 
recent FRA report by Gabree et al., (2014) states that 242 fatalities were determined to be 
suicides on railroad rights-of-way in 2012, compared with 429 trespasser fatalities (non-suicides) 
and 232 grade crossing fatalities. This gives 26.7% (242/ (429+232+242) of all railroad right-of-
way fatalities were suicides; the study further reports that the percentage of suicides can be as 
high as 35%. The study also mentioned that suicides are treated differently from the trespasser 
fatalities for reporting purposes and the data on suicides are stored in a separate database, which 
is not publically available. The authors of this study did not have access to suicide data.  
 
4.2 Spatial distribution of non-crossing rail-trespassing crashes 
 
Figure 2 shows the kernel density for all non-crossing rail-trespassing crashes and fatal 
trespassing crashes in the past decade. Each point in the graph represents a single trespassing 
crash. Green coloring indicates areas of low crash density, yellow moderate density, and red high 
density.  The kernel density revealed the spatial patterns of railroad-trespassing crashes in the 
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United States from 2004 to 2013. On the whole, the highest crash densities are in mega-regions 
such as the Northeastern New York-Boston Area, Great Lakes, Southern and Northern 
California, Piedmont Atlantic Area, Cascadia Area, and the Texas Triangle plus Gulf coast areas. 
These densities are likely related to the surrounding population, train frequencies and trespassing 
exposure. However, the focus of this study is on correlates of injury severity given a crash. 
Therefore crash frequency and its relationship with exposure/geometry are not modeled. Also, 
information about train exposure variables is not commonly available in FRA safety databases. 
The variation in spatial distributions underscores the need for exploring variations in correlates 
of injury severity in space. 
 
 

SECTION 5: MODEL RESULTS 
 
After checking the correlation between variables, the global (traditional) logistics regression 
models are estimated and compared with corresponding GWLR (Table 2). Variables with 
positive coefficient values contribute to higher probability of a fatality, given a crash.  Both 
models are statistically significant overall (0.05% level).  However, the goodness-of-fit for 
global and local models are relatively low, indicating limited explanatory power for the crash 
injury data. This may be partly because some of the key explanatory variables that are associated 
with crash injury severity, e.g., train speed, are missing.  

The global model shows that:  
• Most of the pre-crash actions were found to be significantly associated with 

trespassing injury severity. Among them, lying and sleeping shows statistically 
significant positive associations with probability of fatality compared with the base 
(“other pre-crash actions” than those listed in Table 1). The odds of death for lying on 
track are 60%, [exp(β)-1]*100%, higher than the “base.”  

• Pre-crash actions such as climbing, jumping, stepping into or off the track, riding 
(bicycles), crossing or crawling (over tracks) are less likely to be associated with fatal 
crashes relative to the base. They account for almost one-half of trespassers. Besides 
these actions that do not involve a motor vehicle, 5.5% of pre-crash actions involved 
driving vehicles on or along tracks (in close proximity to the tracks so it was 
categorized as trespassing).  

• Driving, riding, climbing, jumping on tracks or even crossing over tracks have higher 
mobility compared with more static pre-crash actions (lying down) so it would be 
easier for these trespassers to take evasive action in a collision. Therefore, they are 
less likely to be involved in fatal crashes. The odds of driving a motorized vehicle are 
73% lower for fatal crashes compared with the base. One possible reason for this 
driving action is that drivers may get out of their vehicle if the vehicle gets stuck on 
the tracks (Liu et al., 2015b).  

• Sitting or standing, bending, stooping or running/ walking on tracks do not show 
statistically significant associations with injury in the global logistic model. However, 
it is still possible for them to be associated with injuries in local GWR models.   

• For the higher risk population groups, individuals who are older than 65 years (3.6% 
of all involved in trespassing crashes) show a higher chance of fatality compared with 
the base group (30-39 year old). This is in line with expectations, considering seniors 
maybe more fragile and more easily injured. Unexpectedly, individuals who are 
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younger than 16 years (6.5% of all involved) show a lower probability of fatality 
compared with adults. Notably, trespassers younger than 16 years were more likely to 
be involved in pre-crash actions of climbing, jumping and stepping than the base age 
group (Pearson χ2=89.47, p-value = 0.000). Accordingly younger individuals had 
lower injury severity, on average.     

• Yard trespassing (3.7% of all trespassing) is associated with a lower chances of 
fatality compared with those occurring on regular tracks. Using similar logic, i.e., 
examining correlations with pre-crash actions, this study found that trespassing 
crashes in yard areas were more likely to involve climbing, jumping, stepping, riding, 
operation, crossing, crawling, and driving than in other places (χ2 test is statistically 
significant at 95% level). These actions are associated with a lower injury severity.  

• One-half of trespassing cases occurred at night, but on average they are less likely to 
be related with a fatal outcome. This result is also related to the pre-crash actions.  

• No statistically significant evidence was found relating injury severity with 
surrounding land use mix.  
 

Although the conventional (global) Logit regression model explains the average 
correlation between trespassing injury severity and pre-crash action types, involved persons’ 
attributes, and location and temporal factors, the relationships uncovered by the conventional 
model described above is a “global” point of view, which means the model assumes the 
correlates do not vary in space. However, geographical and social contexts vary substantially 
across the United States. Therefore, differences in associations of the coefficients across space 
are expected. GWR can uncover local spatial variation since it allows the regression parameters 
to vary across space.  

Comparing the AIC between the global and local models, the local model outperforms its 
counterpart, as the AIC values for the local model are substantially lower than the global model. 
As a general rule, improvements in the AIC that are less than three (3) in value could easily arise 
as a result of sampling error (Fotheringham et al., 2002), while here the difference between the 
global and local models is substantially greater than three, indicating that the local models are 
statistically better than the global model. As shown in Table 2, the local GWLR models provide 
ranges for coefficients. One criterion to tell the significance of spatial variations compares the 
difference between the upper quartile and lower quartile of the parameter in the local model 
along with twice the standard error of that parameter in the global model. Accordingly all the 
independent variables show that their associations with trespassing fatality vary significantly 
over the United States (indicated by “TRUE” in the table).  

Based on the local parameter estimates, a set of parameter surfaces were generated to 
map the spatial variations of major independent variables. An Inverse Distance Weighted 
(Tidwell Jr and Humphreys) interpolation algorithm assigned values to unknown points based on 
the 8,794 known trespassing crash locations, creating a continuous coefficient surface covering 
the whole country. IDW assumes that each measured point has a local influence that diminishes 
with distance; higher weights are given for locations closer to the prediction location than those 
farther away. Also, the parameter contours are generated based on the IDW interpolation results 
which can better visualize the parameter values in space. T-statistic surfaces are created and 
shown together with the parameter surface.  

Figure 3 demonstrates the spatial distributions of the local parameter estimates for the 
higher risk population groups including (a) youths (age less than or equal to 16 years) and (b) 
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seniors (age equal to or greater than 65 years), as well as (c) trespassing fatalities in railway yard. 
The global models show that individuals who are younger than 16 years have a lower probability 
of fatality compared with the base trespass group (30-39 years old). However, the local GWLR 
models show that trespassing crashes in Northern California and Nevada are more likely to be 
fatal for trespassers younger than 16 years old, as well as crashes in south New Mexico, South 
West Virginia, west part of Virginia and North Carolina. The fatality odds for youths in rail-
trespassing crashes in Northern California and Nevada are 49% to 120% higher than the base 
trespass group. Based on empirical evidence from the spatial model, the trespassing issues in 
these areas should be given more attention when it comes to youths. Note that, in the global 
model, the parameter estimation of youths is -0.294 (odds ratio is 25% lower than the base), but 
this parameter changes between -1.189 (-70%) and 0.795 (120%) in the local model, representing 
substantial variation across the country. Moreover, the coefficient map of seniors shows that 
consideration should be also given to the West and East Coast areas, as well as Eastern Missouri 
and Southern Illinois. In these areas, senior trespassers are even more likely to be killed than 
other areas, given a crash. Also, the odds of fatality for seniors in rail-trespassing crashes in 
Northern California and Nevada are 230% to 570% higher than the base trespasser group.  

In terms of their locations, trespassing crashes in railway yards are also associated with a 
spatially varying fatality chance. The coefficient map in Figure 3 (c) shows that only the positive 
estimates are statistically significant in the local GWLR models. Yard trespassing crashes in the 
States of Washington, Kansas, Georgia, Florida, South Carolina and western New York, are less 
likely to be fatal than in other states.   

Figure 5 shows the parameter maps for each pre-crash action type. Note that the dark 
grey color in the maps represents those areas showing no locally statistically significant 
association with trespassing injury severity (at 95% level). This highlights that, although a 
parameter can be significant or insignificant in the global model, the associations are not 
necessarily the same throughout the study area. Therefore, using a global logistic model may 
generate information in terms of statistical significance that may not be true in all areas, and it 
can potentially hide detailed information on spatial distribution of the associations. 

An important finding is that the pre-crash action types show substantial spatial variations 
in their associations with the probability of a trespassing fatality. For instance, the coefficients of 
lying remain almost positive across the United States, while the coefficients have higher values 
in the Great Lakes area (Illinois and Indiana), and in New Mexico. That means that lying on 
tracks has a higher chance to be fatal in these areas, relative to the “base.” Specifically, the odds 
of being involved in fatal crash are substantially higher, by 5.7 times (or 570 %), for the Great 
Lakes area, compared with the base action type (listed as “other action types” in the database, 
and includes actions such as exercising on or near tracks at the time of collision). Although, the 
database used in this study does not link the behavior of lying on tracks to suicides, it is still 
suspected that a significant number of the trespassers in these regions were likely attempting 
suicide, based on the literature showing that about 20% of such actions are suicides (Cadle Creek 
Consulting, 2008) and given the mixed and dense population in these areas and the economic 
decline in the last decade. The Great Lakes area has a dense railway network with substantial 
train activity, which seems to provide an option to people who wish to end their life by lying on 
train tracks. In addition, some trespassers who are lying on tracks may be drunk and passed out. 
Firm reasons for such differences in outcomes need further investigation, with consideration 
given to various factors that include sociodemographic, economic, cultural, and environmental, 
and intentional vs. unintentional harm variables.  
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For running or walking on (or near) tracks, the global model does not provide support for 
its significant association with a trespassing fatality. However, local models provide more 
nuanced explanations, e.g., in the Northwest and Southeast, as well as West Coast areas, running 
or walking on (near) tracks are less likely to involve fatal crashes while for the Midwest to Great 
Plains, plus the New Mexico, this type of pre-crash actions are associated with higher likelihood 
of fatality, given a crash. The difference might be because of the train operation speeds. The train 
speed in flat areas may be higher than in rolling and mountain areas. Higher speeds are often 
associated with an increased injury severity. Running or walking shows both positive and 
negative associations with a trespassing fatality. This highlights the fact that the traditional 
model can mask important spatial variance existing in both the signs and magnitudes of 
coefficients, while spatially disaggregated regression methods (e.g., GWR) provides a good 
remedy.  

For other pre-crash actions such as climbing, riding, crossing or driving, the signs remain 
negative in almost all over the country with different significance levels. Table 3 summarizes the 
change of odds of trespassing fatality for different pre-crash action types in various mega-regions 
across the US. All the odds shown in Table 3 represent chances of fatality compared with 
particular pre-crash action type relative to “base” pre-crash action (coded as ‘Other action’ in 
table 1 that include all pre-crash actions which cannot fit in the action categories, such as 
exercise on or near tracks). Figure 4 illustrates where these mega-regions are located in the US. 
The table provides a complete big picture view of how different pre-crash actions are related to 
deadly railway trespassing crashes. As different metropolitan areas show substantially different 
impacts of different pre-crash actions on non-crossing rail-trespassing fatalities, strategy and 
policy inferences that suit local settings should be considered. Notably, some of the regional 
differences may reflect the different geography of the regions. For example, Eastern portions of 
the US have relatively older, larger and more extensive rail networks (including frequent 
commuter service) that are located in more densely-populated areas.   

 
 

SECTION 6: LIMITATIONS 
 
The GWR family of models (including GWLR) is “data-hungry” requiring intensive 
computations.  Models in this paper were calibrated using the GWR 4 package, which took more 
than 4 hours with a workstation level computer. This is much longer than estimation of a 
conventional logistic model. The model itself largely depends on the accuracy of location 
information since the spatial weights in the model are based on physical locations in space. The 
data of years prior to 2011 were geo-imputed into the centroid of the county where the 
trespassing occurred while the data after 2011 were coded into their actual location (note that 
there are 3,144 counties and county equivalents in the US). This geo-imputation will impact the 
accuracy of the models, and it is recognized as a limitation. However, considering that the model 
covers a relatively large space (the entire country) and this study uses a relative large kernel size 
(500 crashes) for GWLR estimation, the extent of errors in terms of stationarity is likely to be 
small.  
 Another limitation of this study may be the issue of under-reporting of less severe 
trespassing crashes. FRA Guide for Preparing Accident/Incident Reports indicates that the 
reported incident/accidents should satisfy the reporting threshold in stipulated dollars, ranging 
from $6,700 to $8,200 (FRA, 2011). If less severe crashes are under-reported, then the models 

16 | 8 0  
 



estimated in this study may predict a slightly higher probability of fatal trespassing crashes than 
it actually is.   

The estimated models may have limited explanatory power due to missing variables. 
Unfortunately, some key explanatory variables which are usually reported in crossing crash 
reports were not available for track trespassing crashes. This is partially because the railway 
tracks are usually open facilities with no specially designated management equipment which 
makes it difficult to collect appropriate data, e.g., tracking train speeds.   

This study explores rail-trespassing injury by emphasizing fatal and injury crashes, 
further expansion of the study can consider other measures to assess the harm of the rail-
trespassing crashes, e.g., the monetary costs of crashes. Also, correlation among explanatory 
variables is a concern. Variance inflation factors were calculated for the explanatory variables 
and the ones used in the study were less than 10, which is the threshold at which multi-
collinearity among explanatory variables becomes problematic.  

 
 

SECTION 7: CONCLUSIONS AND RECOMMENDATIONS 
 
Rail trespassing crashes at non-crossings has received less attention compared with highway-rail 
grade crossing crashes, which has received wider attention, e.g., the Rail Safety Improvement 
Act of 2008 (US Congress 2008) has one chapter discussing highway-rail grade crossing safety 
issues. Such crashes are an increasing concern, and it is certainly not an easy task to prevent 
trespassing on nearly 140,000 route-miles of rail tracks. Nevertheless, trespassing on tracks in 
non-crossing locations is not a trivial issue. On average, one person is killed for every 300 rail 
route-miles per year. The proportion of fatalities (at more than 50%) is much higher than crashes 
that occur at highway-rail grade crossings (where the comparable proportion of fatalities is 25% 
for all incidents based on FRA 2004-2013 data, after excluding property-damage only crashes). 
This research is timely because it highlights trespassing crashes that occur on non-crossing rail 
track locations and it should be of interest to researchers, practitioners, and the general public.  

While researchers have focused on understanding factors associated with rail-trespassing 
crashes, most of them concentrate on crashes that occurred at crossings and few studies have 
explored crashes caused by trespassing along railway tracks/right-of-way. This paper fills a gap 
by using a fairly comprehensive database to investigate an under-researched area– railway track 
trespassing crashes at non-crossings–and applying a novel location-sensitive modeling 
methodology to uncover the relationships between trespassing crash injuries and their associated 
factors. The study takes advantage of the recent developments in geo-referenced data and higher 
computational power of the computers.  

The study has the following key findings: 1) higher rail-trespassing fatality chances, 
given a crash, are associated significantly with pre-crash behaviors, especially lying and sleeping 
on tracks; seniors are more likely to be killed in rail-trespassing crashes while youths are less 
likely to be killed compared with adults; rail-trespass crash injury severity was not statistically 
significantly (5% level) related with land use and weekend or weekday; 2) a critical finding is 
uncovering spatial variations in the correlates, given the variations in spatial locations of crashes. 
That is to say, the coefficients are not identical (stationary) over space but vary across the 
country. Therefore, relationships between injuries and certain variables from one location cannot 
be generalized to other locations. Fundamentally, rail-trespass crashes are complex and nuanced 
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and the basic assumption of independence of spatial proximity in traditional regression models 
does not fully hold in the situation explored.  
 Using GWLR, local models provide maps of coefficients, which visualize the 
associations by showing where certain pre-crash actions are associated with higher probability of 
trespassing crash injury. The study provides valuable information that can help rail safety 
stakeholders focus their attention on critical factors in geographies that show higher risks of 
fatalities in crashes. Due to the limitations of the crash data, it is difficult to draw firm 
conclusions about how to design treatments to prevent railway track trespassing crashes or 
reduce their intensity. However, the national level spatial models show an intuitive big picture of 
railway track trespassing crash facts in the United States. Some areas become prominent based 
on spatial model results, e.g., lying (some of which are potential suicides) and sitting or standing 
on the tracks has the highest probability of fatality in the Great Lakes area. Senior trespassers 
have a higher probability of fatality in Northern California. Such findings should motivate 
studies concentrating on these particular areas to further explore the issue. Far more detailed 
information including social, economic, land use, community crime rate, demographics can be 
incorporated in such case studies to identify reasons for such outcomes. The case studies would 
complement a national study by providing more detailed suggestions on effective design of 
treatments in order to avoid rail-trespasser crashes at non-crossings. The study will investigate 
effectiveness of various countermeasures that include adding fences in critical areas or safety 
alert signs, surveillance, and public education. Notably, countermeasures sometimes come with 
certain issues, e.g., fencing can be subject to vandalism or may relocate a person to a non-fenced 
area such as a station platform. Overall, there is a need to study effective countermeasures that 
can be targeted regionally to specific trespassing behaviors that have the highest risk. 
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Table 1. Descriptive Statistics for Non-Crossing Rail-Trespassing Events (N=8,794 
Observations) 

 
Variable N Mean/Percent Std. 

 
Min Max 

Injury Severity (0-other, 1-fatal) 459
 

52.19% 0.500 0 1 

Age 

<=16 years old 572 6.50% 0.247 0 1 
17-29 years old 245

 
27.91% 0.449 0 1 

30-39 years old 249
 

28.35% 0.451 0 1 
40-54 years old 234

 
26.62% 0.442 0 1 

55-64 years old 619 7.04% 0.256 0 1 
>=65 years old 315 3.58% 0.186 0 1 

Env. 
 

Darkness (0-no, 1-yes) 449
 

51.16% 0.500 0 1 

Time 

Weekend (0-no, 1-yes) 295
 

33.64% 0.472 0 1 
Summer (0-no, 1-yes) 259

 
29.55% 0.456 0 1 

Winter (0-no, 1-yes) 168
 

19.10% 0.393 0 1 
Spring or Autumn (0-no, 1-yes) 451

 
51.34% 0.500 0 1 

Location 
attributes 

Land Use Mix Index #  0.419 0.280 0.00
 

0.98
 Railway Yard (0-no, 1-yes) 326 3.71% 0.189 0 1 

Pre-crash 
trespasser 

actions 

Climbing, jumping, stepping 753 8.56% 0.280 0 1 
Riding, operation 468 5.32% 0.224 0 1 

Lying, sleeping (on or near 
 

205
 

23.35% 0.423 0 1 
Running, walking 308

 
35.07% 0.477 0 1 

Crossing, crawling (over tracks) 215 2.44% 0.154 0 1 
Sitting, standing, bending, 

 
146

 
16.60% 0.372 0 1 

Driving 486 5.53% 0.229 0 1 
Other action (0-no, 1-yes) * 275 3.13% 0.174 0 1 

Notes:  
1. # Land Use Mix Index was developed by Environmental Protection Agency (EPA) to capture 
the land use mix entropy level, which varies from 0 (homogeneous land use, such as in rural 
areas or suburban subdivisions) to 1 (most mixed, such as diverse city centers) land use (GeoDa, 
2015).  
2. * Other pre-crash actions include those action types which cannot fit in the categories listed in 
the table, e.g., exercising.   
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Table 2. Global and Local Models for Non-Crossing Rail-Trespassing Crash Injury Severity 
 

Models  Global Model (binary logit) Global Model (dropped 
insignificant variables) Local GWLR Model 

Variables β P>|t| β SE P>|t| Min Max Lwr 
Quartile 

Upr 
Quartile 

(Upr-
Lwr)>2SE 

Constant 0.251 0.069 0.261 0.131 0.045 -1.832 1.486 -0.369 0.669 TRUE* 

Age (Base: 30-
39 years old) 

<=16 years old -0.294 0.003 -0.294 0.100 0.003 -1.189 0.795 -0.491 0.107 TRUE 
17-29 years old -0.007 0.909 -0.007 0.060 0.906 -0.546 0.670 -0.107 0.130 TRUE 
40-54 years old 0.185 0.002 0.186 0.061 0.002 -0.149 0.841 0.027 0.363 TRUE 
55-64 years old 0.250 0.008 0.250 0.095 0.008 -0.517 1.294 0.075 0.529 TRUE 
>=65 years old 0.641 0.000 0.641 0.131 0.000 -0.175 2.094 0.412 0.949 TRUE 

Env. attributes Darkness (0-no, 1-yes) -0.110 0.019 -0.110 0.047 0.018 -0.543 0.288 -0.185 -0.024 TRUE 

Time 
Weekend (0-no, 1-yes) 0.005 0.917 Dropped 

Summer (Base: Spring and Autumn) -0.142 0.006 -0.142 0.052 0.006 -0.812 0.352 -0.290 -0.038 TRUE 
Winter (Base: Spring and Autumn) 0.053 0.383 0.053 0.060 0.383 -0.325 0.370 -0.102 0.149 TRUE 

Location 
attributes 

Land Use Mix Index 0.017 0.833 Dropped 
Railway Yard (0-no, 1-yes) -1.037 0.000 -1.036 0.142 0.000 -4.765 0.359 -1.258 -0.652 TRUE 

Pre-crash 
trespasser 

actions  
(Base: Other 
actions***) 

Climbing, jumping, stepping -1.357 0.000 -1.359 0.151 0.000 -4.213 0.537 -1.811 -0.850 TRUE 
Riding, operation -1.032 0.000 -1.035 0.160 0.000 -2.596 0.605 -1.541 -0.564 TRUE 

Lying, sleeping (on or near tracks) 0.469 0.000 0.467 0.132 0.000 -1.113 2.468 -0.107 1.194 TRUE 
Running, walking -0.023 0.857 -0.024 0.128 0.850 -1.435 1.907 -0.523 0.493 TRUE 

Crossing, crawling (over tracks) -0.766 0.000 -0.767 0.191 0.000 -4.605 2.227 -1.412 -0.461 TRUE 
Sitting, standing, bending, stooping 0.171 0.203 0.170 0.134 0.206 -1.364 1.968 -0.292 0.740 TRUE 

Driving -1.297 0.000 -1.299 0.162 0.000 -3.371 0.548 -1.828 -0.497 TRUE 

Summary Statistics 

Sample Size: 8794 Sample Size: 8794 Local Sample Size**: 500 
Log likelihood = -5642.09 Log likelihood = -5642.12  

Prob > χ2     =     0.00 Prob > χ2    =     0.00 Pseudo-R2 = N/A,  % deviance explained: 0.115 
Pseudo-R2 = 0.073 Pseudo-R2 = 0.073 AIC = 11308.19 
AIC = 11322.19 AIC = 11318.24  

Notes: 1. * True means the significance of spatial variance of coefficient.  
           2. ** Local sample size is the number of subsamples used in each kernel; 500 local closest surrounding trespassing cases were used as the subsample for 
these regressions. This kernel size was chosen based on balancing model performance and conceptual considerations. On average, one mega-region in the US 
contains between 400-700 trespassing cases over the past decade. 
           3. ***Other actions may include activities like exercise on or near tracks. 
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Table 3. Odds of Fatality in Non-Crossing Rail-Trespassing Crashes for Different Pre-
Crash Behaviors (Relative to Base Pre-Crash Action) in Major Mega-Regions 

 

Regions 
Climbing, 
jumping, 
stepping 

Riding Lying on 
or near 
tracks 

Running 
Crossing Sitting or 

Standing Driving 
Other pre-

crash actions 
(base) Operation Walking 

Northeastern -75% -90% - -14% -55% - -77% 0 
Great Lakes -45% - 570% 172% -55% 350% 80% 0 

Northern CA and 
NV -90% -90% - -63% -83% - -86% 0 

Southern CA -75% 55% - -14% -45% - - 0 
Piedmont Atlantic -98% 80% - -63% -90% - -95% 0 

Cascadia Area -63% -52% 82% - -63% - - 0 
New Mexico - - 1000% 420% - 500% - 0 
Gulf Coast -80% -74% - -53% -70% - -92% 0 

Florida -94% -74% - -65% -70% - -80% 0 
Notes: “-“means no statistical significant associations (95% level) found in such area. These regions are only based on the results 
of GWR modeling and do not represent (Control and Prevention)defined mega-regions.  
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Figure 1. Different Risky Actions of Non-Crossing Railway-Trespassing. Source: Internet  
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(a) Total Crashes-Fatal and Non-Fatal (N= 8,794) 

 
(b) Fatal Crashes (N=4,204) 

 
Figure 2. Kernel Density Distribution for Non-Crossing Rail-Trespassing Crashes  
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Figure 3. Local Parameter Estimates for Non-Crossing Rail-Trespassing Crashes in Higher 

Risk Population Groups 
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Figure 4. Mega-Regions for This Study 
 

28 | 8 0  
 



 
 

Figure 5. Local Parameter Estimates for Non-Crossing Rail-Trespassing Crashes 
Associated with Pre-Crash Action Types 
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A COMPARATIVE STUDY OF RAIL-PEDESTRIAN AND BICYCLIST TRESPASSING 
CRASH INJURY SEVERITY AT HIGHWAY-RAIL GRADE CROSSINGS AND NON-

CROSSINGS 
 

Meng Zhang, Asad Khattak, Jun Liu, and David Clarke 
The University of Tennessee, Knoxville 

 
Abstract - This study examined rail-pedestrian and cyclist trespassing crash injury 
severity in two different settings, highway-rail grade crossings and non-crossings, by 
using railroad injury and illness incidents data. It explores how pre-crash trespassing 
behaviors and other factors (e.g., crash time, location and social demographic) differ 
between highway-rail grade crossings and non-crossings. The analysis used ten years 
(2005-2014) of rail-pedestrian and bicyclist trespassing crash records extracted from a 
Federal Railroad Administration (FRA) safety database. The total number of rail-
pedestrian and bicyclist trespassing crashes used for analysis were 10,146; of this 
number, 8,258 (81% of the total) are non-crossing trespassing crashes and 1,888 (19%) 
are highway-rail grade crossing trespassing crashes. At highway-rail grade crossings, 
43.4% of the crashes were fatal, whereas at non-crossings, 53.4% of the crashes involved 
a fatality. The most prevalent pre-crash trespassing behavior is riding (a bicycle or other 
non-motorized transport) or operating equipment (51.5%) at highway-rail grade 
crossings. Lying or sleeping and running or walking account for about 61% of non-
crossing crashes. To explore relationships, this study applied separate and pooled models 
for injury severity in highway-rail grade crossing and non-crossing trespassing crashes. 
To account for the ordinal nature of severity data, ordered logistical regression models 
(proportional odds models) were estimated. Next, the proportional odds assumption was 
tested, and the results of partial proportional odds models were provided. Modeling 
results show that the correlates of injury severity differ across highway-rail grade 
crossings and non-crossings. For example, lying or sleeping accounted for a higher 
probability of fatal injury in rail-pedestrian and cyclist trespassing crashes in both 
settings-notably such crashes were even more injurious at grade crossings than at non-
crossings. The role of pre-crash behaviors was explored and the implications are 
discussed. 

 
Keywords: rail-trespassing crash; injury severity; crossing; non-crossing; pre-crash action; 
comparative analysis 
 
 

SECTION 1: INTRODUCTION 
 
For railway safety, rail-pedestrian crashes are a major concern, as rail-pedestrian crashes are a 
leading cause of fatalities in rail-related crashes (Pelletier 1997, Lobb, Harre et al. 2001, Savage 
2007). However, an increasing societal concern is rail-trespasser crashes, especially non-
motorized trespassers (pedestrian and bicyclist). In 2014, pedestrian and bicyclist trespassing on 
rail properties was a fact in more than 500 fatalities and more than 450 injuries (Administration 
2015). These incidents annually produce billions of dollars in personal and societal costs 
(Trottenberg and Rivkin 2013). According to Federal Railroad Administration (FRA) statistics, 

30 | 8 0  
 



rail trespassing fatalities and injuries are rising. With increasing exposure of trespassers and 
more train activities, rail crashes with pedestrian and bicyclist trespassers will remain a critical 
concern in the future. 

FRA defines trespassers as persons who should not be present on the railway right-of-
way. Normally, a person at highway-rail grade crossing would not be recognized as a trespasser 
unless the person goes around or through crossings with physical barriers (e.g., gates are down). 
A person deliberately ignoring the barrier in an attempt to cross will also be coded as a trespasser 
(Safety 2011). Most trespassers are pedestrians, but some are individuals who are driving or 
riding a bicycle, an all-terrain vehicle (ATV), snowmobile, etc. (George 2008). As there is little 
in common between motorized trespassers and non-motorized trespassers, this study will focus 
only on vulnerable, non-motorized trespassers (pedestrian and bicyclist). 

The key question to be answered in this research is how pre-crash behaviors and other 
correlates (e.g., crash time, location and social demographic) of rail-pedestrian and bicyclist 
trespassing injury severity vary between highway-rail grade crossings and non-crossings. To the 
best of our knowledge, studies have not compared variations in injury risks at highway-rail grade 
crossings with non-crossings. A variety of factors, including the trespassers’ pre-crash actions, 
may be associated with injury severity. How these associations vary from highway-rail grade 
crossings to non-crossing tracks has not been fully explored. Therefore, the objective of this 
study is to explore and compare differences in injury severity and correlations of pre-crash 
behaviors and other factors with injury severity. The analysis involved estimation of injury 
severity models together and separately for highway-rail grade crossings and non-crossings. 

 
 

SECTION 2: LITERATURE REVIEW 
 
Previous studies investigate rail-related crashes with pedestrians, bicyclists, vehicles and other 
users (Oh, Washington et al. 2006, Horton, Carroll et al. 2009, Khattak and Luo 2011, Metaxatos 
and Sriraj 2013, Gabree, Chase et al. 2014, Liu, Khattak et al. 2014, Liu, Bartnik et al. 2015). 
Examining trespassing motivations can help us understand trespassers’ intentions. Studies have 
shown various types of trespassing motivations (Pelletier 1997,Lobb, Harre et al. 2001,Savage 
2007). Choosing a shorter or more convenient path to a destination is a common motivation for 
trespassers (Lobb, Harre et al. 2001,Safety 2007).  

Some studies suggest suicide as a motivation to trespass. According to a European report, 
more than 3,000 people were killed in train crashes yearly owing to suicides or trespassing 
(Burkhardt, Radbo et al. 2014). However, determining whether a fatality is suicide or accident is 
always challenged by inadequate information (Mishara 2007). In addition to inadequate 
information, the social, legal, financial and ethical implications also complicate identifying rail 
suicide as a cause of fatality (Lobb 2006). Nonetheless, about 20% to 27% of deaths were 
recorded as suicides (Gabree, Chase et al. 2014, George 2008). Although the Rail Safety 
Improvement Act of 2008 (RSIA) requires information about suicides to be collected, such 
information is not publicly available.  

Literature on rail-related crashes also highlights other associated factors, including 
personal or environmental characteristics, timing and location attributes, trespassers’ behaviors 
(pre-crash behaviors) and countermeasures implemented to prevent trespassing events (Cina, 
Koelpin et al. 1994,Pelletier 1997,Silla and Luoma 2012).  
 

31 | 8 0  
 



 
2.1 Rail-pedestrian crash analysis 
 
Trespasser socio-demographic characteristics are commonly investigated. Individuals belonging 
to a specific social group (e.g., young males, intoxicated with alcohol) may be frequently 
involved in a rail-pedestrian fatal crash. Youths and seniors would seem to be more vulnerable as 
trespassers, though few rail crashes included youths under 10 years old and seniors above 60 
years old (Pelletier 1997,Silla and Luoma 2012). Nixon et al. illustrated that young people 
involved in rail crashes were associated with risk-taking and daring behaviors (Nixon, Corcoran 
et al. 1985). Most fatalities in rail-pedestrian crashes were young males (Cina, Koelpin et al. 
1994,Pelletier 1997,Silla and Luoma 2012,George 2008). Compared to females and seniors, 
young males tended to lack awareness of dangers for a specific traffic situation (Lobb, Harre et 
al. 2001). Pelletier reported that trespassing fatalities typically involved individuals who were 
unmarried males without high school education (Pelletier 1997). Individuals who were 
intoxicated with problems of alcohol, medicines or drugs were easier contributed to being struck 
by trains (Silla and Luoma 2009,George 2008). 

Previous studies have explored the timing and location of rail-pedestrian crashes. For 
example, fatal crashes occurred frequently from March to August (Pelletier 1997). Rail-
pedestrian crashes have shown temporal clustering. They occur frequently at the end of a week 
(from Friday to Sunday) and during rush hours (Silla and Luoma 2012). Lerer and Matzopoulos 
noticed that rail injuries commonly occurred during peak commuting times in the city of Cape 
Town, South Africa (Lerer and Matzopoulos 1996). As for geographic clustering, most 
trespasser fatalities tended to be specific to locations like high-density populated areas and rail 
yards (Matzopoulos and Lerer 1998,Silla and Luoma 2009,Silla and Luoma 2012). 
Geographically Weighted Logistic Regression (GWRL) model were estimated to investigate the 
spatial patterns of rail non-crossing trespassing crashes across the United States (Wang, Khattak 
et al. 2014). However, little information is available about how rail-trespasser crashes patterns 
differ between grade crossings and non-crossings. This study investigates injury severity levels 
of rail-trespasser crashes given a crash, focusing on the role of pre-crash behaviors at grade 
crossings vs. non-crossings. 

Trespassers’ pre-crash behaviors were found to be highly associated with the 
consequences of train crashes. Lying or walking on the railroad track were common precursor 
behaviors (Patterson and Authority 2004,Savage 2007). Several studies showed that most fatal 
train crashes happened when individuals were walking, sitting or lying on or near to the railway 
tracks (Cina, Koelpin et al. 1994,Lerer and Matzopoulos 1996,Pelletier 1997). Information on 
pre-crash behavior will help address reasons of trespassing crashes, such as committing suicide 
(Savage 2007,Silla and Luoma 2012). A retrospective analysis on suicidal behavior (jumping, 
lying and wandering) revealed that fatality rate was highest when the victim was lying and 
lowest when jumping. 

 
2.2 Rail-related injury severity 
 
Injury severity is another concern in rail-trespasser crashes. Published research on rail crash 
injury severity largely relates to drivers or pedestrians at grade crossing (Fan and Haile 2014,Liu, 
Khattak et al. 2014,Zhao and Khattak 2015). Fan et al. (2015) estimated the multinomial logit 
model to explore correlates of injury severity of rail-pedestrian crashes at grade crossing, 
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showing that fatal crashes are more likely to occur under cloudy weather, on paved highways, 
with low temperature (<50° F) and in cities. Khattak (2013) applied an ordered logit model to 
investigate the severity outcome of rail-pedestrian crashes at grade crossings. The results show 
that high train speed and female pedestrians were associated with higher chances of injury 
severity, given a crash (Khattak 2013). 

Other studies on injury severity analysis have estimated various models that include the 
ordered probit logit model, random parameter logit model, mixed generalized ordered logit 
model and generalized logit model. These studies have identified the relationship between safety 
outcome and related factors (Eluru, Bhat et al. 2008,Hu, Li et al. 2010,Khattak and Luo 
2011,Liu, Khattak et al. 2014,Zhao and Khattak 2015). 
 
2.3 Trespasser safety interventions 
 
Some studies have focused on countermeasures that prevent rail-trespasser crashes (Pelletier 
1997,Lobb 2006,Savage 2007,Silla and Luoma 2011). Silla et al. illustrated that the effectiveness 
of countermeasures varies with diversity of trespasser characteristics (Silla and Luoma 2011). 
They mainly recommended physical barriers (landscaping, fencing) for reducing trespassing, but 
prohibitive signs was recommended when the sites are not suitable for physical barriers. 
Punishment, education and communication were found to be effective in preventing rail 
trespassing behaviors (Lobb, Harre et al. 2003). Lobb et al. found that public education can be 
more effective than communications but less than punishment (Lobb, Harre et al. 2003). Lobb et 
al. also applied a self-reported survey to evaluate the effectiveness of educational and 
environmental countermeasures in New Zealand. The authors further pointed out that the access 
preventions was an effective strategy (Lobb, Harre et al. 2001). 
 

The relationship between rail-related trespassing crashes and relevant factors is of 
interest. Especially, no studies have compared injury severity in crossing and non-crossing 
crashes. In fact, there are only a few studies of injury severity in rail trespassing crashes. 
Noticing the geographical diversity of rail-trespasser crashes, Wang et al. investigated spatial 
patterns of trespasser injury severity at non-crossings (Wang, Khattak et al. 2014). However, 
differences in injury severity correlates from highway-rail grade crossing to non-crossing 
pedestrian and bicyclist trespassing crashes have not been fully explored. With increasing 
concern about non-motorized trespassers and given the diversity of rail-pedestrian and bicyclist 
trespassing crashes across highway-rail grade crossings and non-crossings, it is important to 
uncover the potentially different correlates of injury severity. 
 
 

SECTION 3: APPROACH AND METHODOLOGY 
 
3.1 Data Source 
 
The data used in this study were railroad safety information obtained from FRA Office of Safety 
Analysis Web Site (https://safetydata.fra.dot.gov/OfficeofSafety/Default.aspx). Railroad safety 
information, including accidents and incidents, inventory and highway-rail crossing data, were 
available to public in this site. The data structure of dataset related to this study was shown in 
figure 1. A total of 419,164 highway-rail crossing inventories (6180.71) were filed across United 
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States. Between 2005 and 2014 year, 23,638 highwy-rail grade crossing accidents (6180.57) 
have occurred and 96,285 railroad injury/illness records (6150.55a) were reported. Any 
reportable individual fatality, injury, or illness that meets one or more of the general reporting 
criteria listed in FRA report guide (Safety 2011) should be filed in 6180.55a, such as injury to 
any person that results in medical treatment. 

For this study, Railroad Injury/Illness Summary dataset (6180.55a) was used for analysis. 
Ten years (2005-2014) of rail-trespasser crashes data representing 12,254 incidents (personal 
level) were extracted from this dataset based on the rule that the type of person whose 
injury/illness was reported as “Type E = trespassers”. Notably, the trespasser defined in this 
study will not contain a person at highway-rail grade crossing unless the grade crossing protected 
by gates or other similar interventions that can be regarded as physical barriers. Thus, a 
pedestrian or vehicle that accesses grade crossing without a physical barrier will not be defined 
as a trespasser (Safety 2011). Then based on occurring location (variable “LOCC” in the 
dataset), these rail-trespassing crashes were calssified into three categories: non-crossing 
trespassing crashes, highway-rail grade crossing trespassing crashes and other-rail crossing 
trespassing crashes. Note that trespassing crashes occurred at other-rail crossings were not 
involved in this study due to the low sample size (21 out of 12254 as shown in figure 1). As this 
study only focus on rail-pedestrian and bicyclist trespassing crashes, rail-motorists trespassing 
crashes were also exclusive. Finally, this study obtained 10,146 rail-pedestrian and bicyclist 
incidents after data cleaning and error check. Of these, 8,258 (81%) occurred at non-crossing 
locations and 1,888 (19 %) at highway-rail grade crossings. 
 Rail-pedestrian and bicyclist trespassing crash data contains personal attributes (e.g., age 
of individuals), geographical and temporal characteristics (e.g., location and time), pre-crash 
behaviors (e.g., lying, siting, runing, climbing) and the nature of injuries (fatal injury and non-
fatal injury). The data are of reasonably good quality, with FRA’s guidance on standard 
procedures for coding variables. As population density was recognized as contribute factor to  
rail-trespassing crashes (Silla and Luoma 2009,Silla and Luoma 2012), census information 
including polulation density, education and income level obtained from United States Census 
Bureau (http://www.census.gov/en.html) were involved in the analysis. For each row in rail-
pedestrian and bicyclist trespassing crash dataset, the corresponding census information was 
coded into the census information of county where the trespassing crash occurred. The data were 
verified and error checked using descriptive statistics. 
 
3.2 Model Structure 
 
Unlike studies focusing on crash rates or frequency at specific grade crossing locations, this 
study investigates the correlates of non-motorized trespasser injury severity given a rail-
pedestrian and bicyclist trespassing crash. A scale of  three categories (Y= 3 is fatal injury – 
reported as fatality; Y=2 is severe injury – reported as bruise, fracture, amputation and 
laceration; Y=1 is minor injury – otherwise, i.e. nervous shock) is defined in this study, 
justifying the estimation of ordered logistical regression model to explore relationships between 
injury severity and a set of explanatory variables. The predicted probability for each category Y 
in a simple ordered logit model (proportional odds model) can be calculated as follows (Long 
and Freese 2006): 

Pr(𝑌𝑌 = 1|𝑋𝑋) =
exp(𝛼𝛼1 − 𝑋𝑋𝑋𝑋)

1 + exp(𝛼𝛼1 − 𝑋𝑋𝑋𝑋) (1) 
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            Pr(𝑌𝑌 = 𝑗𝑗|𝑋𝑋) = exp�𝛼𝛼𝑗𝑗−𝑋𝑋𝑋𝑋�
1+exp�𝛼𝛼𝑗𝑗−𝑋𝑋𝑋𝑋�

− exp�𝛼𝛼𝑗𝑗−1−𝑋𝑋𝑋𝑋�
1+exp�𝛼𝛼𝑗𝑗−1−𝑋𝑋𝑋𝑋�

 for j = 2 to J - 1 (2) 

Pr(𝑌𝑌 = 𝐽𝐽|𝑋𝑋) = 1 −
exp (𝛼𝛼𝐽𝐽−1 − 𝑋𝑋𝑋𝑋)

1 + exp (𝛼𝛼𝐽𝐽−1 − 𝑋𝑋𝑋𝑋)
 (3) 

Where, 
Y = The injury severity category level from j = 1 to J; 
X = A vector of explantory variable in the model, e.g., pre-crash behavior; 
α = Cut points (thresholds) for injury severity level from j = 1 to J - 1; 
β = A vector of estimated coefficients for explantory variables; 

  
Note that the parallel regression assumption should be satisfied in proportional odds 

model, i.e., the coefficient will be the same for all values of j in the proportional odds model. It is 
necessary to test this parallel regression assumption as the coefficient may vary across different 
level of injury categories. If the proportional odds assumption is violated, then the partial 
proportional odds model is more apprporiate. This model overcomes a key limitation of 
proportional odds model. For some variables, the coefficients will be the same for all categories 
of j while for other variables coefficients can differ across injury categories. The predicted 
probability can be formulated as follows (Long and Freese 2006,Williams 2006): 

Pr(𝑌𝑌 = 1|𝑋𝑋) =
exp (𝛼𝛼1 − 𝑋𝑋𝛽𝛽1) 

1 + exp (𝛼𝛼1 − 𝑋𝑋𝛽𝛽1) 
 (4) 

              Pr(𝑌𝑌 = 𝑗𝑗|𝑋𝑋) = exp (𝛼𝛼𝑗𝑗−𝑋𝑋𝛽𝛽𝑗𝑗) 
1+exp (𝛼𝛼𝑗𝑗−𝑋𝑋𝛽𝛽𝑗𝑗)

− exp (𝛼𝛼𝑗𝑗−1−𝑋𝑋𝛽𝛽𝑗𝑗−1) 
1+exp (𝛼𝛼𝑗𝑗−1−𝑋𝑋𝛽𝛽𝑗𝑗−1) 

 for j = 2 to J - 1 (5) 

Pr(𝑌𝑌 = 𝐽𝐽|𝑋𝑋) = 1 −
exp (𝛼𝛼𝐽𝐽−1 − 𝑋𝑋𝛽𝛽𝐽𝐽−1)

1 + exp (𝛼𝛼𝐽𝐽−1 − 𝑋𝑋𝛽𝛽𝐽𝐽−1)
 (6) 

Where, 
βj = A vector of estimated coefficients that vary based on category level. 
α = Cut points (thresholds) for injury severity level from j = 1 to J – 1. 

 
 

SECTION 4: FINDINGS 
 
4.1 Descriptive analysis 
 
Table 1 shows the descriptive statistics of rail-pedestrian and bicyclist trespassing crashes 
occuring at highway-rail grade crossings and non-crossings during the study period. Most of 
these trespassers had direct collisions with trains (at grade crossings) or  were struck by on-track 
equipment (at non-crossings). Total yearly crashes ranged from 902 to 1,117 with a small peak in 
2006 and a slight increase from 2011. Annually, grade crossing crashes were more uniform 
(ranging from 159 to 238) than non-crossing crashes (ranging from 738 to 956). Non-crossing 
trespassing crashes are important because they account for nearly 81% of the total. 

On the whole, over 51% (5,231) of the crashes resulted in a rail-pedestrian and bicyclist 
trespassing fatality. Thus, these crashes annually killed about 510 individuals. Most fatalities 
involved pedestrian and bicyclist trespassers who were running or walking, sitting or standing, 
lying, crossing and climbing at grade crossing or rail tracks. Individuals involved in rail-
pedestrian and bicyclist trespassing crashes tended to be adults between 17 and 64 years old, as 
expected (87% overall).  
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Figure 2 presents the percentage of rail-pedestrian and bicyclist trespassing crashes 
(crossing vs. non-crossing) by pre-crash behaviors during the study period. Riding or operation 
of equipment accounts for about more than 51% of annual trespasser crashes at grade crossings 
versus 5.8% at non-crossings. Trespassers who were running/walking accounted for 37.7% of 
non-crossing crashes and 29.5% of grade crossing crashes. It is also notable that about 24% of 
non-crossing crashes involved lying/sleeping , whereas these showed a much lower frequency at 
1.6% at crossings. Generally, rail-pedestrian and bicyclist trespassers invovled in crashes exhibit 
substantially different pre-crash behaviors at crossings versus non-crossings. 

Age shows substantial variations between grade crossings and non-crossings. Senior 
trespassers (aged 65 or greater) are involved in 10.7% of grade crossing crashes, but only 3.1% 
of non-crossing crashes. About 48.7% of the trespasser crashes occurred at night. Of crossing 
crashes, 42% were nighttime compared with 50% of non-crossing crashes.  

Rail yards are associated with 3.6% of non-crossing trespasser crashes and  0.6% of 
crossing crashes. The number of tracks and operational needs of the railroads tend to minimize 
the placement of at-grade crossings at yard locations. The average population density is 1214 per 
square mile for non-crossing crashes, but 997 per square mile for grade crossing crasehs. There 
is no significant difference between non-crossings and grade crossings regarding to education 
and income level. 

Correlations between variables were estimated and analyzed, especially focussing on 
correlations among potential explanatory variables. The estimated matrix indicated that almost 
all correlations among potential explanatory variables were lower than 0.3. A few variables, such 
as youth and adult categories in the age variable, show higher correlations due to the structure of 
the data. That is, they are indicator variables representing high-frequency age groups and as such 
are correlated. Overall, the correlation matrix implies that multicollinearity problems may be 
minimal. 

Figure 3 presents the kernel density of rail crossing and non-crossing trespassing crashes 
across the country. Blue and red colors indicate low density area and high density areas, 
respectively. The map is provided for visaulation and verification/error-checking purposes only. 
This paper does not analyze the spatial locations of crashes. The distribution of non-crossing 
crashes are more dispersed (at 5% level). A large proportion of crashes occurred in the 
northeastern U.S. This region has a large population and high train traffic volumes.   

 
4.2 Model results 
 
The outputs of pooled and separate models quantifying the correlates of rail-pedestrian and 
bicyclist trespassing injury severity are shown in Table 2 and Table 3. The first model shown in 
Table 2 is a simple ordered logit model (proportional odds model) with the restrictive parallel 
regression assumption while the model shown in Table 3 is a partial propotional odds model 
which relaxes the restriction of parallel regression assumption. The backward stepwise selection 
precedure autofit was used, showing that the parallel regresssion assumption is violated (at 5% 
level). All models shown in Table 2 and Table 3 have goodness-of-fit that is on the low side. 
However, most variables show statistically significant correlations with the response variable (at 
5% level) and the model is statistically significant overall.  

The use of separate models is justified by the Likelihood Ratio test, at 5% level (Neyman 
and Pearson 1992), which indicates that separate models are preferred. Based on the results, the 
correlates of rail-pedestrian and bicyclist trespassing fatality differ between grade crossings and 
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non-crossings. Also, note that in Table 3, most correlates vary across the ordinal categories at 
non-crossings while they are consistent at grade crossings. The results highlight the fact that 
pooled model can hide some of the variations in both the signs and mangitudes of coefficients 
between grade crossings and non-crossings. Marginal effects are provided to give a cleaner sense 
of correlates. Marginal effects in ordered regresssion model are the changes of probability from a 
lower injury category to a higher injury category associated with a unit change in the explanatory 
variable. Variables with a positive sign indicate an increasing probability of a non-motorized 
trespasser being severly injured or killed with an increase in the explantory variable. 

 
4.2.1 Discussion of Key Factors 

 
4.2.1.1 Pre-crash behaviors 

 
Key variables of interest in this study are pre-crash behaviors. The pooled model shows that the 
chances of rail-pedestrian and bicyclist trespassing crashes fatality are statistically significantly 
higher when the person is lying/sleeping, running/walking, sitting/standing/bending/stooping. 
Lying has been suspected to be suicides or intoxication, indicating that these individuals 
potentially expose themselves to trains and would not escape from the train (Savage 2007,Silla 
and Luoma 2012). Riding/operation and climbing/jumping are associated with lower injury 
severity compared with the base of “other actions” which include excercising, for example. 

The separate models show interesting results. Notable are the differences in magnitudes 
and signs of pre-crash behaviors. Lying/sleeping has the largest association with fatalities both at 
grade crossings and non-crossings, but more injurious at grade crossings. Additionally, 
running/walking are more injurious at grade crossings, than at non-crossings. Climbing/jumping 
and riding/operation are statistically significantly associated with lower probability of fatality at 
non-crossings while they do not associate significantly with injury severity at crossings. 
Crossing/crawling is associated with more injurious at grade crossings, but not significant at non-
crossings. Sitting/standing/bending/stooping is more injurious at non-crossings. Generally, pre-
crash behaviors are more statistically significantly associated with rail-pedestrian and bicyclist 
trespassing crashes severity at crossings. 

Notably, the difference between proportional odds model and partial propotional odds 
model is that partial proportional odds model quantifies the potentially different contributions of 
explanatory variables across injury categories. In this case, pre-crash behaviors have shown 
different signs and magnitudes of coefficients across injury categories at non-crossings, while the 
signs and magnitudes are more consistent across injury categories at grade crossings. For 
example, sitting/standing/bending/stooping only makes conrtibution to severe injury at grade 
crossings while the coefficients for sitting/standing/bending/stooping are consistently positive 
but increase from minor injury category across severe injury category. This means that people 
with such pre-crash behaviors are associated with higher change of fatal injury but they are less 
likely to put themselves in severe injury at non-crossings, compared with base level (other 
behaviors). Coversely, trespassers who are climbing/jumping are more likely to be severely 
injured at non-crossings while they do not associate significantly with minor injury. 
 
4.2.1.2 Other trespassing-related factors 
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The pooled model shows that the chances of rail-pedestrian and bicyclist trespassing crashes 
fatality are statistically significantly higher when the person involved is a senior, and the crash 
occurs in a non-railyard location. Results from the separate model show that trespassers less than 
65 years old have lower probability of fatal crash involvement (given a crash) at grade crossings, 
than at non-crossings overall. Crashes occurring in summer or darkness shows statistically 
significantly higher probability of fatality at crossings, while less injurious at non-crossings. The 
county median household income contributes higher chance of fatal injury. The more persons 
under poverty level in a county, the higher probability of fata crash involvement at grade 
crossings. No statistical evidence was found relating injury severity with location (urban vs. 
rural) or population density. 

Table 3 also shows the chance of rail-pedestrian and bicyclist trespassing fatality across 
highway-rail grade crossings and non-crossings. This provides information about how different 
attributes are related to rail-pedestrian and bicyclist trespassing fatal crashes. Take lying/sleeping 
for example (in partial propotional odds model), from the pooled model, the chance for 
lying/sleeping trespassers being killed is 23.9%, compared with trespassers who are choosing to 
engage in other behaviors (i.e., the base level of pre-crash actions in the model). For the non-
crossing model, the chance of fatality is a little smaller which is 23.2%, while from the crossing 
model, the percentage is substantially larger, increasing by 35.2%.  

To understand trends, Figure 4 shows the chance of fatality in rail-pedestrian and 
bicyclist trespassing crashes over time (relative to the base year of 2005) based on the results 
from partial proportional odds model. The trends of chance of fatality for rail crossing and non-
crossing fatality vary according to year. During the years analyzed, the chances of fatality have 
remained stable in terms of non-crossing crashes (showing slight reductions since 2009 but slight 
increase after 2013), while the chance of crossing fatalities have greater fluctuations (small 
peaking in 2009 and showing a sharp reduction since 2009, but sharp increase after 2013), 
compared with the base level (of 2005). Clearly, the study has shown substantially different 
correlations in terms of time trends and various factors with rail-pedestrian and bicyclist 
respassing fatality between highway-rail grade crossings and non-crossings. 

 
 

SECTION 5: LIMITATIONS 
 
While this study selected key variables for analysis, other factors (e.g., alcohol involvement) 
may contribute to pedestrian and bicyclist trespasser injury severity, but lack of data prevented 
their investigation. Available variables constrain the analysis, and consequently the estimated 
models have limited explanatory power. The data availability problem is more severe for non-
crossings, since such data are difficult to obtain. 
 Another limitation of this study is the under-reporting issue. According to the FRA guide 
for preparing accident or incident reports, the reportable railroad accidents/incidents should meet 
the reporting criteria (Safety 2011). One criteria is that the reported railroad accidents/incidents 
should satisfy the monetary reporting threshold, such as $7,700 for calendar year 2006. Besides 
that, accidents/incidents reported in 6180.55a should also meet with the general reporting 
criteria, like injury to any person that result in medical treatment. Thus, the database would not 
contain cases that do not meet the criteria. Then these under-reported of less severe injury cases 
would make the predicted probability of fatality in this study is higher than reality. 
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Variations in the magnitudes of dependent and independent variables may affect study 
findings. Using parametric statistical methods to analyze crash data from FRA, this study did not 
control variations in variables (as is the case with experimental studies where researchers have 
greater control). Further, ten years of data analyzed in the study could be affected by variation in 
the reporting methods or procedures (although the variables collected are consistent over these 
years). While the researchers checked the data using descriptive statistics, coding errors or 
inaccurate records may still exist. 
 
 

SECTION 6: CONCLUSIONS 
 
This study addresses a key question: how pre-crash behaviors and other correlates of rail-
pedestrian and bicyclist trespassing injury severity differ between highway-rail grade crossings 
and non-crossings? To answer the question, ten years (2005-2014) of FRA maintained rail 
pedestrian and bicyclist trespassing crash records were analyzed by estimating rigorous models, 
i.e., partial proportional odds and proportional odds models.  This comprehensive database 
contains crashes at both highway-rail grade crossings and non-crossings. Results from separate 
and pooled models revealed substantial differences in correlates of rail-pedestrian and bicyclist 
trespassing crash injury severity, especially in terms of pre-crash behaviors. Key findings 
include: 

• Higher probability of rail-pedestrian and bicyclist trespassing fatality is associated with 
lying/sleeping; lying/sleeping and running/walking are injurious at both highway-rail 
grade crossings and non-crossings, but more so at highway-rail grade crossings. 

• Sitting/standing/bending/stooping are more injurious at non-crossings, while 
crossing/crawling are more injurious at highway-rail grade crossings. 

• Crashes occurring during darkness and summer are more injurious at grade crossings. 
• Seniors (65 years or older) are more likely to be involved in fatal crashes than other age 

groups (less than 65 years old). 
• The trends show more fluctuations for crossing crashes, but relatively more stability for 

non-crossings over a 10-year period. 
Generally, rail-motorist collisions were used to evaluate railroad safety. However, such 

measurement is not appropriate without considering rail-pedestrian and bicyclists crashes. This 
study indicated that pedestrian and bicyclists trespassing behaviors are significant to railroad 
safety. Besides, rail-pedestrian and bicyclists trespassing crashes at non-crossings have received 
less attention in the literature, compared with crashes at grade crossings. For example, the Rail 
Safety Improvement Act has an entire chapter devoted to crashes at grade crossings (US 
Congress 2008), but non-crossing crashes are not covered. Furthermore, almost all available rail-
trespasser related studies were dealing with crash frequency, but not crash injury severity. This 
study is timely because it highlights different risk factors associated with injury severity in rail- 
pedestrian and bicyclists trespassing crashes comparing grade crossings and non-crossings. The 
risk factors identified in the study can point transportation researchers, practitioners and policy 
makers toward safety interventions that can reduce risks, lowering injury severity in crashes. 

This study reveals lying/sleeping is a critical pre-crash behavior associated with high 
probabilities of rail- pedestrian and bicyclists trespassing fatality for both highway-rail grade 
crossings and non-crossings. The behavior indicates suicidal intentions, involvement of 
alcohol/drugs, general negligence, or the person being transient. Studies on relevant 
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countermeasures are needed, e.g., posting information about suicide prevention hotlines. It is 
possible that countermeasures will have different outcomes at grade crossings than non-
crossings. Past studies have pointed out that the effectiveness of some countermeasures, which 
are typically highly dependent on trespasser characteristics and location of crashes (Silla and 
Luoma 2011,Burkhardt, Radbo et al. 2014). Overall, to promote railroad safety at the national 
level, studies of countermeasures that reduce crashes and injuries at both crossings and non-
crossings are needed. 
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Table 1. Descriptive Statistics for Rail-Pedestrian and bicyclist Trespassing Events Using FRA Data 
 

  Total (N=10146) Non-crossing 
(N=8258) 

Highway-rail grade 
crossing (N=1888) %Diff of 

Mean 
 Variables Mean Std. Dev Min Max Mean Std. 

Dev Mean Std. 
Dev 

Injury 
Minor injury (level 1) 0.148 0.355 0 1 0.133 0.340 0.212 0.409 58.76% 
Severe injury (level 2) 0.336 0.472 0 1 0.332 0.471 0.354 0.478 6.44% 

Killed (level 3) 0.516 0.500 0 1 0.534 0.499 0.434 0.496 -18.69% 

Personal 
attributes 

Youths (<=16 years old) 0.078 0.268 0 1 0.068 0.251 0.123 0.329 81.99% 
Middle (17-35 years old) 0.378 0.485 0 1 0.391 0.488 0.322 0.467 -17.83% 
Adult (36-64 years old) 0.498 0.500 0 1 0.509 0.500 0.448 0.497 -12.04% 

Seniors (>=65 years old) 0.046 0.208 0 1 0.031 0.175 0.107 0.309 239.82% 
Temporal 
attributes Darkness (0-no, 1-yes) 0.487 0.500 0 1 0.503 0.500 0.420 0.494 -16.44% 

Seasonal 
attributes 

Summer (0-no, 1-yes) 0.288 0.453 0 1 0.298 0.457 0.242 0.428 -18.78% 
Winter (0-no, 1-yes) 0.200 0.400 0 1 0.186 0.390 0.257 0.437 38.03% 

Spring and autumn (0-no, 1-yes) 0.513 0.500 0 1 0.516 0.500 0.501 0.500 -2.90% 
Location Yard (0-no, 1-yes) 0.030 0.171 0 1 0.036 0.186 0.006 0.076 -83.75% 

Trespassing 
pre-crash 
actions 

Climbing, jumping 0.055 0.229 0 1 0.067 0.250 0.005 0.073 -92.06% 
Riding, operation 0.143 0.350 0 1 0.058 0.234 0.515 0.500 789.43% 
Lying, sleeping 0.199 0.400 0 1 0.241 0.428 0.016 0.125 -93.42% 

Running, walking 0.362 0.480 0 1 0.377 0.485 0.295 0.456 -21.71% 
Crossing, crawling 0.024 0.153 0 1 0.025 0.157 0.019 0.135 -26.75% 

Sitting, standing, bending, 
stooping 0.155 0.362 0 1 0.169 0.374 0.096 0.295 -42.85% 

Other actions 0.062 0.240 0 1 0.063 0.243 0.054 0.226 -14.53% 
Crash year (2005-2014) Not reported Not reported Not reported  

Census 
attributes 

% of bachelor's degree or higher 
(25+) 

26.633 10.141 5.1 71.7 26.893 10.274 25.498 9.457 -64.83% 

Median household income 
($/1000) 

52.707 13.682 20.972 110.292 52.991 13.931 51.465 12.465 -76.48% 

% of persons below poverty level 16.367 5.520 3.9 44.1 16.309 5.622 16.620 5.042 -69.08% 
Population per square mile 1173.647 3023.090 0.3 69467.5 1214.113 3275.51 996.653 1465.72 20.72% 

Note: “Other actions” refers to pre-crash actions that cannot be coded into one of the categories shown in the Table, e. g., other actions include a person 
exercising on or near tracks; 
“% Difference of mean” refers to (Crossing mean – Non-crossing mean) /Non-crossing mean. 
“Not reported” statistical descriptive of crash years are shown in Figure 2.
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Table 2. Ordered Logit Model for Injury Severity in Rail-Pedestrian and bicyclist Trespassing Crashes at Crossings and Non-
Crossings 

 

 Pooled model Separate model 
Non-crossing mode Highway-rail grade crossing model 

  β Marg. Eff. β Marg. Eff. β Marg. Eff. 

 Variables Minor Severe Fatal Minor Severe Fatal Minor Severe Fatal 

Personal attributes 
(base: senior) 

Youths (<=16 years old) -0.884** 13.1% 6.9% -20.0% -0.740** 10.0% 7.2% -17.2% -1.065** 19.4% 1.9% -21.3% 
Middle (17-35 years old) -0.635** 7.9% 6.6% -14.5% -0.516** 5.9% 6.1% -12.0% -0.837** 13.7% 3.8% -17.5% 
Adult (36-64 years old) -0.496** 5.9% 5.2% -11.1% -0.386** 4.3% 4.6% -8.8% -0.669** 10.4% 3.5% -13.9% 

Temporal 
attributes Darkness (0-no, 1-yes) -0.053 0.6% 0.6% -1.2% -0.123** 1.4% 1.5% -2.9% 0.254** -3.9% -1.6% 5.5% 

Season (base: 
spring and autumn) 

Summer (0-no, 1-yes) -0.066 0.8% 0.7% -1.5% -0.128** 1.4% 1.6% -3.0% 0.208* -3.1% -1.4% 4.5% 
Winter (0-no, 1-yes) -0.036 0.4% 0.4% -0.8% -0.012 0.1% 0.1% -0.3% -0.094 1.5% 0.6% -2.0% 

Location Yard (0-no, 1-yes) -0.795** 9.4% 8.9% -18.4% -0.822** 9.0% 10.2% -19.2% -0.602 9.3% 3.7% -13.0% 

Trespassing pre-
crash actions 

(base: other action) 

Climbing, jumping -0.268** 3.4% 2.8% -6.2% -0.317** 3.8% 3.7% -7.5% -0.404 6.9% 1.6% -8.5% 
Riding, operation -0.383** 4.9% 4.1% -9.0% -0.344** 4.2% 3.9% -8.1% -0.138 2.1% 0.9% -3.0% 
Lying, sleeping 1.052** -10.1% -13.3% 23.5% 1.025** -9.4% -13.6% 23.0% 1.616** -15.9% -17.5% 33.4% 

Running, walking 0.643** -7.3% -7.4% 14.7% 0.552** -5.9% -6.7% 12.6% 1.155** -15.4% -11.3% 26.8% 
Crossing, crawling 0.107 -1.2% -1.2% 2.5% 0.008 -0.1% -0.1% 0.2% 0.770** -9.7% -7.1% 16.9% 

Sitting, standing, bending, 
stooping 0.662** -6.8% -8.1% 14.9% 0.693** -6.5% -9.0% 15.5% 0.368 -5.3% -2.8% 8.0% 

Crash year (base: 2005 year) Not reported Not reported Not reported 

Census 
attributes 

% of bachelor's degree or higher 
(25+) -0.009** 0.1% 0.1% -0.2% -0.010** 0.1% 0.1% -0.2% -0.001 0.0% 0.0% 0.0% 

Median household income ($/1000) 0.017** -0.2% -0.2% 0.4% 0.017** -0.2% -0.2% 0.4% 0.019** -0.3% -0.1% 0.4% 
% of persons below poverty level 0.010 -0.1% -0.1% 0.2% 0.006 -0.1% -0.1% 0.1% 0.025* -0.4% -0.2% 0.5% 

Population per square mile 0.000 0.0% 0.0% 0.0% 0.000 0.0% 0.0% 0.0% 0.000 0.0% 0.0% 0.0% 

Constant cut 1 -1.163    -1.373    -0.024    cut 2 0.652    0.471    1.730    Sample size 10146 8258 1888 
Pseudo-R2 0.0457 0.0394 0.0662 

Log Likelihood at β -9593.8587 -7693.298 -1866.2424 
Log Likelihood at 0 -10053.083 -8008.8904 -1998.6202 

Prob>ChiSq <.0001* <.0001* <.0001* 
Likelihood ratio test  68.64, <0.0001* 

Notes: STATA software (ologit program) was used.  “Pseudo-R2” refres to 1 – (Log Likelihood at β/Log Likelihood at 0);  
Marginal effects refer to the changes in the response variable with a unit change in the explanatory variable. 
“Other actions” is the base for pre-crash behaviors; it refers to pre-crash actions that cannot be coded into one of the  categories shown in the Table, e.g., other 
actions include a person exercising on or near tracks; 
Crash years have not shown statistical significant correlation at non-crossings in ordered logit model. 
“**“means statistical significant associations were found (at 5% level);  “*“means statistical significant associations were found (at 10% level).
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Table 3. Partial Proportional Odds Models for Injury Severity in Rail-Pedestrian and bicyclist Crashes at Crossings and Non-
Crossings 

 

  
Pooled model Separate models 

Non-crossing model Highway-rail grade crossing model 
Coefficient Marginal Effect Coefficient Marginal Effect Coefficient Marginal Effect 

 Variables β1 β2 Minor Severe Fatal β1 β2 Minor Severe Fatal β1 β2 Minor Severe Fatal 
Personal 
attributes 

(base: senior) 

Youths (<=16 years old) -0.878** -0.878** 10.6% 9.5% -20.1% -0.744** -0.744** 8.3% 8.8% -17.1% -1.052** -1.052** 16.2% 6.4% -22.7% 
Young(17-35 years old) -0.512** -0.671** 6.2% 9.2% -15.3% -0.415** -0.545** 4.6% 7.9% -12.5% -0.838** -0.838** 12.9% 5.1% -18.1% 
Adult(36-64 years old) -0.488** -0.488** 5.9% 5.3% -11.2% -0.381** -0.381** 4.3% 4.5% -8.8% -0.659** -0.659** 10.2% 4.0% -14.2% 

Temporal 
attributes Darkness (0-no, 1-yes) -0.055 -0.055 0.7% 0.6% -1.3% -0.125** -0.125** 1.4% 1.5% -2.9% 0.422** 0.167 -6.5% 2.9% 3.6% 

Season (base: 
spring and 
autumn) 

Summer (0-no, 1-yes) -0.067 -0.067 0.8% 0.7% -1.5% -0.128** -0.128** 1.4% 1.5% -2.9% 0.209* 0.209* -3.2% -1.3% 4.5% 

Winter (0-no, 1-yes) -0.035 -0.035 0.4% 0.4% -0.8% -0.012 -0.012 0.1% 0.1% -0.3% -0.089 -0.089 1.4% 0.5% -1.9% 

Location Yard (0-no, 1-yes) -0.646** -1.059** 7.8% 16.4% -24.2% -0.697** -1.047** 7.8% 16.3% -24.1% -0.623 -0.623 9.6% 3.8% -13.4% 

Trespassing pre-
crash actions 
(base: other 

action) 

Climbing, jumping 0.170 -0.618** -2.0% 16.2% -14.1% 0.127 -0.669** -1.4% 16.8% -15.4% -0.455 -0.455 7.0% 2.8% -9.8% 
Riding, operation -0.373** -0.373** 4.5% 4.0% -8.5% -0.335** -0.335** 3.7% 4.0% -7.7% -0.153 -0.153 2.4% 0.9% -3.3% 
Lying, sleeping 1.048** 1.048** -12.6% -11.3% 23.9% 1.011** 1.011** -11.3% -12.0% 23.3% 1.635** 1.635** -25.2% -10.0% 35.2% 

Running, walking 0.639** 0.639** -7.7% -6.9% 14.6% 0.540** 0.540** -6.0% -6.4% 12.4% 1.164** 1.164** -18.0% -7.1% 25.1% 
Crossing, crawling 0.535** -0.081 -6.4% 8.3% -1.8% 0.426** -0.201 -4.7% 9.4% -4.6% 0.762** 0.762** -11.8% -4.7% 16.4% 

Sitting, standing, bending, 
stooping 0.417** 0.712** -5.0% -11.3% 16.3% 0.464** 0.725** -5.2% -11.5% 16.7% 0.026 0.527** -0.4% -11.0% 11.4% 

Crash year (base: 2005 year) Not reported Not reported Not reported 

Census 
attributes 

% of bachelor's degree or higher 
(25+) -0.003 -0.011** 0.0% 0.2% -0.3% -0.005 -0.012** 0.1% 0.2% -0.3% -0.001 -0.001 0.0% 0.0% 0.0% 

Median household income 
($/1000) 0.018** 0.018** -0.2% -0.2% 0.4% 0.017** 0.017** -0.2% -0.2% 0.4% 0.019** 0.019** -0.3% -0.1% 0.4% 

% of persons below poverty level 0.009 0.009 -0.1% -0.1% 0.2% 0.006 0.006 -0.1% -0.1% 0.1% 0.025* 0.025* -0.4% -0.2% 0.5% 
Population per square mile 0.000 0.000 0.0% 0.0% 0.0% 0.000 0.000 0.0% 0.0% 0.0% 0.000 0.000 0.0% 0.0% 0.0% 

Constant α1 0.913** -0.596**  1.065** -0.388  -0.012 -1.720**  
Sample size (N) 10146 8794 1888 

Pseudo-R2 0.0517 0.0459 0.0716 
Log Likelihood at β -9532.8759 -7641.5635 -1855.5875 

Prob>χ2 <.0001* <.0001* <.0001* 
Likelihood Ratio test  71.45, <0.0001* 

Notes: STATA software (gologit2 program) was used with autofit; “Pseudo-R2” refres to 1 – (Log Likelihood at β/Log Likelihood at 0);  
Marginal effects refer to the changes in the response variable with a unit change in the explanatory variable.   
“Other actions” is the base for pre-crash behaviors; it refers to pre-crash actions that cannot be coded into one of the  categories shown in the Table, e.g., other 
actions include a person exercising on or near tracks; “Not reported” coefficients of crash years are shown in Figure 4; 
 “**“means statistical significant associations were found (at 5% level);  “*“means statistical significant associations were found (at 10% level).
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Figure 1. Data Structure of Railway Safety Dataset in FRA 
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a) Crashes at Non-Crossings (N= 8,258) 

 

 
b) Crashes at Grade Crossings (N= 1,888) 

 
Figure 2. Rail-Pedestrian and bicyclist Trespassing Crashes by Pre-Crash Behavior Across 

Highway-Rail Grade Crossings and Non-Crossings (2005-2014) 
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a) Total Rail-Pedestrian and bicyclist Trespassing Crashes at Non-Crossings (N= 8,258) 

 

   
b) Total Rail-Pedestrian and bicyclist Trespassing Crashes at Grade Crossings (N= 1,888) 

 
Figure 3. Kernel Density Distribution of Rail-Pedestrian and bicyclist Trespassing Crashes 
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Figure 4. Chance of Fatality in Rail-Pedestrian and bicyclist Trespassing Crashes for 2005-
2014 
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WHAT ARE THE DIFFERENCES IN DRIVER INJURY OUTCOMES AT HIGHWAY-
RAIL GRADE CROSSINGS?  

UNTANGLING THE ROLE OF PRE-CRASH BEHAVIORS 
 

Jun Liu, Asad Khattak, Stephen H. Richards and Shashi Nambisan 
The University of Tennessee, Knoxville 

 
Abstract – Crashes at highway-rail grade crossings can result in severe injuries and 
fatalities to vehicle occupants. Using a crash database from the Federal Railroad 
Administration (N=15,639 for 2004-2013), this study explores differences in safety 
outcomes from crashes between passive controls (Crossbucks and STOP signs) and 
active controls (flashing lights, gates, audible warnings and highway signals). To address 
missing data, an imputation model is developed, creating a complete dataset for 
estimation. Path analysis is used to quantify the direct and indirect associations of passive 
and active controls with pre-crash behaviors and crash outcomes in terms of injury 
severity. The framework untangles direct and indirect associations of controls by 
estimating two models, one for pre-crash driving behaviors (e.g., driving around active 
controls), and another model for injury severity. The results show that while the presence 
of gates is not directly associated with injury severity, the indirect effect through stopping 
behavior is statistically significant (95% confidence level) and substantial. Drivers are 
more likely to stop at gates that also have flashing lights and audible warnings, and 
stopping at gates is associated with lower injury severity. This indirect association lowers 
the chances of injury by 16 percent, compared with crashes at crossings without gates. 
Similar relationships between other controls and injury severity are explored. Generally, 
crashes occurring at active controls are less severe than crashes at passive controls. The 
results of study can be used to modify Crash Modification Factors (CMFs) to account for 
crash injury severity. The study contributes to enhancing the understanding of safety by 
incorporating pre-crash behaviors in a broader framework that quantifies correlates of 
crash injury severity at active and passive crossings.   

 
Keywords: grade crossing, pre-crash behavior, injury severity, controls, path analysis, data 
imputation 
 
 

SECTION 1: INTRODUCTION 
 
Safety at highway-rail grade crossings remains an important societal concern in the United 
States, as well as other parts of the world. Crashes occurring at grade crossings can result in 
severe injuries and fatalities to vehicle occupants. Safety effectiveness of crossing controls is 
also important in tort liability that results from crashes. According to 2013 Federal Railroad 
Administration (FRA) crossing inventory database, the United States has 133,825 reported 
public crossings, as opposed to 82, 921 crossings located on private property, highway-railroad 
(vehicle) grade crossings. Of these public vehicle grade crossings, 64,626 (48.3 percent) are 
passive crossings. Such crossings are those fitted with only passive warning devices (e.g., 
Crossbuck and STOP signs, pavement markings and advanced warning signs) that deliver static 
warnings, guidance, and, in some instances, mandatory action for the driver. The remaining 
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69,199 (51.7 percent) public grade crossings are active crossings, which are additionally fitted 
with active traffic control devices (e.g., gates, flashing lights and bells) that provide variable 
messages to motorists, indicating whether or not a train is approaching or occupying a crossing 
(Ogden 2007).  

During 1981 to 2013, the number of crashes at highway-rail grade crossings has reduced 
by 77.8 percent (FRA 2013). The decreases are typically attributed to the upgrading from passive 
to active crossings and the improvements made on active grade crossings (Meeker, Fox et al. 
1997,Millegan, Yan et al. 2009,Lenné, Rudin-Brown et al. 2011).  Compared with passive 
controls (STOP signs and Crossbucks), active control devices (flashing lights and gates) have 
shown lower crash rates (Raub 2009). This is mainly due to the potential for active controls to 
gain additional driver attention and lead to greater compliance(Meeker, Fox et al. 1997). 
Although crash frequency has declined over the years, it is notable that fatality rates (per crash) 
at grade crossings have increased, from 7.7 percent in 1981 to 11 percent in 2013, as have injury 
rates (FRA 2013). While studies have pointed out clear relationships between crash frequencies 
and associated factors, and explored correlates of crash frequencies (Oh, Washington et al. 
2006), it is still unclear what key factors, especially crossing controls, contribute to the severity 
of outcomes (e.g., lower or higher injuries)  and the behavioral mechanisms that lead to injuries, 
given a crash. 

The main objective of this study is to investigate relationships between safety outcomes 
and various crossing controls, and answer how differences in safety outcomes between active 
and passive traffic control at highway-rail grade crossings are associated with drivers’ actions 
prior to the event of a crash, called pre-crash behaviors.  

 
 

SECTION 2: LITERATURE REVIEW 
 
Researchers aim to reveal what types of controls at grade crossings are effective in improving 
crossing safety, i.e., reducing crash frequencies/rates, or lowering crash injury severity. Table 1 
and 2 summarize relevant studies that focused on the examination of crossing control 
effectiveness, in terms of crash frequencies/rates or crash injury severity.   
 
2.1 Crash Rates 
 
Many studies have compared crash rate at passive controls and active controls (Austin and 
Carson 2002,Elvik and Vaa 2004,Mok and Savage 2005,Park and Saccomanno 2005,Raub 
2006,Saccomanno, Park et al. 2007,Elvik, Vaa et al. 2009,Millegan, Yan et al. 2009,Raub 
2009,Yan, Han et al. 2010,Yan, Richards et al. 2010). They have generally found that crash rates 
are lower at STOP controlled intersections compared with Crossbuck signs. Furthermore, 
crossings fitted with active control devices including gates and flashing lights had lower crash 
rates than those with STOP signs. 
 The Highway Safety Manual provides Crash Modification Factors (CMFs) to indicate the 
percent of reduction/increase in crash rates after implementing certain types of traffic control 
devices at grade crossings (Gross, Persaud et al. 2010). For example, the CMF for upgrading 
previously passive crossings to active crossings with gates is 0.33, indicating the crash rates are 
expected to be reduced by 67 percent if the upgrading is made; and for installing gates at 
crossings that previously had flashing lights and sound signals is 0.55 (Elvik and Vaa 2004). 
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More CMFs generated by relevant studies are shown in Table 1, as well as the Clearinghouse 
website (http://www.cmfclearinghouse.org/). However, no information is available about the 
changes of the crash injury severity by implementing certain countermeasures at highway-rail 
grade crossings. This study explores the levels of the crash injury severity given a crash, 
focusing on the role of active vs. passive crossings.  
 
2.2 Injury Severity 
 
Comparatively fewer studies have examined crash injury severity (Raub 2006,Hu, Li et al. 
2010,Eluru, Bagheri et al. 2012,Russo and Savolainen 2013,Hao and Daniel 2014,Zhao and 
Khattak 2015). Table 2 summarizes relevant studies on injury severity given a crash. Generally, 
crashes at crossings are severe, with many involving fatalities, e.g., 31.8 percent  collisions at 
gate crossings were with at least one fatality, 25 percent at crossings with flashing lights were 
fatal, and only 12.4 percent at crossings with STOP signs were fatal (Raub 2006). Also, gates 
were found to be associated with mitigated injury severities, compared with those at crossing 
with only Crossbuck signs, while the flashing lights were found to be related with higher 
likelihood of injuries and fatalities (Eluru, Bagheri et al. 2012). Studies have also examined the 
role of socio-demographics in injury severity. Despite studies on the injury severity of crashes at 
grade crossings (Hu, Li et al. 2010,Russo and Savolainen 2013,Hao and Daniel 2014,Zhao and 
Khattak 2015), the role of active vs. passive controls remains under-researched.  
 
2.3 Behavioral Considerations 
 
The Highway Safety Manual provides a discussion of factors contributing to crashes, which are 
helpful in countermeasure selection and implementation. Typically, crashes have multiple 
contributing factors, e.g., time of day, driver attentiveness, speed, vehicle condition, road design, 
weather, and glare. Driver factors typically play a large role in a majority of crashes. Therefore, 
it is critical to consider the role of driver behaviors in crash occurrence and injury severity 
(AASHTO 2010).   
 The occurrence of risky driver behaviors may be largely attributed to two factors: 1) 
inadequate comprehension of the traffic controls at grade crossings and 2) non-compliance with 
crossing controls. Various studies have evaluated evaluate driver knowledge of traffic control 
devices at grade crossings. Not all drivers were certain about the required responses at grade 
crossings with contain controls, e.g., Crossbucks, advance warning signs, and flashing lights 
(Tidwell Jr and Humphreys 1981,Richards and Heathington 1988).. Some traffic control devices 
(e.g., STOP signs) that are often used at regular highway intersections may be confusing to some 
drivers, if used at rail grade crossings (Jeng 2005). In addition to the inadequate comprehension, 
non-compliance with crossing controls is another issue detrimental to crossing safety. Some 
drivers may violate crossing controls intentionally if they judge that it is safe to cross the track, 
even when they are warned about an approaching train (Richards and Heathington 1990,Tenkink 
and Van der Horst 1990,Abraham, Datta et al. 1998,Witte and Donohue 2000,Gill, Multer et al. 
2007). Various reasons, such as long warning times (greater than 60 seconds), avoidance of wait 
times, and poor sight distance at grade crossings, may also lead motorists not to seeing an 
oncoming train and engaging in risky crossing behaviors (Richards and Heathington 
1990,Abraham, Datta et al. 1998,Liu, Bartnik et al. 2015).   
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 Some risky behaviors, such as “did not stop at crossings,” are associated with an 
increased likelihood of injury and fatalities (Tidwell Jr and Humphreys 1981,Richards and 
Heathington 1988,Jeng 2005,Russo and Savolainen 2013). Drivers were more likely to sustain 
severe injuries if they went around or through the gates, given a crash (Cooper and Ragland 
2012,Eluru, Bagheri et al. 2012). Pre-crash driver behaviors, defined as motorist actions prior to 
a crash, were found to be good indicators of the effectiveness of crossing control devices and 
they can result in higher or lower injury severity (Liu, Bartnik et al. 2015). This study explores 
the associations of pre-crash behaviors with crossing controls, and the consequences of motorists 
engaging in certain behaviors prior to crashes. 
 
2.4 Crash Modeling  
 
Given the ordinal nature of crash severity, ordinary ordered logit/probit models are often 
estimated (Eluru, Bagheri et al. 2012,Khattak 2013,Russo and Savolainen 2013,Hao and Daniel 
2014). Some researchers treat injury severities as discrete outcomes and neglect ordering in the 
severity, so the multinomial logit model is estimated (Fan and Haile 2014,Zhao and Khattak 
2015). Other models such as generalized logit model (Hu, Li et al. 2010), latent segmentation 
based ordered logit model (Eluru, Bagheri et al. 2012), random parameter logit model (Zhao and 
Khattak 2015) and mixed generalized ordered logit model (Eluru, Bhat et al. 2008) have been 
applied to explore the linkages between crash severity and associated factors. Recently, 
researchers have developed methodologies that predict crash frequency and crash severity 
simultaneously using multivariate models, such as multivariable Poisson models (Ye, Pendyala 
et al. 2009,Ye, Pendyala et al. 2013).  

Theoretically, driver, vehicle, and roadway factors are correlates of injury severity. 
However, the relationships between injury severity and correlates are more nuanced and the 
variables may be inter-related. For example, drivers may be more likely to violate gates (given 
crashes), resulting in higher injury severity; but at the same time, the presence of gates may serve 
as a deterrent and associate with lower severity of injury. This method of untangling inter-
relationships is known as path analysis, also called Structural Equation Modeling (SEM), which 
has been used for many driving behavior and traffic crash studies (Khattak and Rocha 
2003,Constantinou, Panayiotou et al. 2011,Kim, Pant et al. 2011,Wang and Qin 2014).   

Factors, such as driver age, gender, road conditions etc. and the crash severity have been 
linked directly to the crash severity, and also connected indirectly through latent endogenous 
variables, such as vehicle speed and collision force (Wang and Qin 2014). Traffic code violations 
have been used as a bridge between driving outcomes (incidents and offences) and associated 
factors including driver age, gender and other personality factors (Constantinou, Panayiotou et 
al. 2011).  

 
In general, most of previous studies on crossing crash injury severity have focused on the 

direct associations of controls, while the indirect effects of controls through the pre-crash 
behaviors have not been fully investigated. With the availability of contemporary statistical 
techniques, it is possible to untangle the chain of behavioral events and other variables that result 
in more or less severe crash outcomes. Specifically, this study uses path analysis to explore the 
direct and indirect associations (through driver pre-crash behaviors) of crossing control devices 
and other factors with crash outcome –injury severity. More specifically, this study quantifies the 
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additional benefits of installing gates in terms of lowering injury severity for the remaining 
crashes, noting that some crashes will be eliminated altogether due to gates.  

 
 

SECTION 3: APPROACH AND METHODOLOGY 
 
3.1 Data Acquisition 
 
The Office of Safety Analysis under FRA maintains a safety website 
(http://safetydata.fra.dot.gov/) to make all railway-related safety data available to the public. 
Previous studies used data from this source, for different study periods. Most studies used ten-
year crash data for safety studies on grade crossings (Raub 2009,Eluru, Bagheri et al. 2012,Russo 
and Savolainen 2013,Hao and Daniel 2014). Note that for studies on crash frequency/rate, using 
10 year data may overcome the low mean number of crashes issue at grade crossings (Lord 
2006). However, the reasons for using 10 year data in this study include 1) making full use of the 
available information, 2) fully capturing the variations in infrastructure, vehicles, and motorists, 
and 3) with some combinations of crossing controls being rare, using more years of data to 
increase the size of such combinations. Also, note that the unit of analysis in this study is the 
crash rather than grade crossing.  
 For this study, ten-year crash data were extracted from Highway-Rail Grade Crossing 
Accident/Incident Report (Form 6180.57). The data include crash features (e.g., time, fatality, 
injury), crossing features (e.g., controls, ID, track class, impact train speed), involved highway 
user characteristics (e.g., user type, vehicle speed, user age, gender, user behavior), situational 
factors (e.g., weather, visibility, temperature, view of track) and other information required to be 
documented by FRA. The data are of reasonably good quality. The data were error checked by 
the authors and ranges and distributions of key variables were found to be reasonable, compared 
with equivalent databases used in similar studies (Raub 2009,Eluru, Bagheri et al. 2012,Russo 
and Savolainen 2013,Hao and Daniel 2014).  

 
3.2 Data Imputation 
 
Crash reports may be incomplete for several reasons, e.g., errors or lack of entry by individuals 
who code the data, or non-coverage of certain roadways. Observations with missing variables 
can be removed, if there are few of them or the missing values are randomly distributed. 
However, if these conditions are not met, e.g., the missing data are non-random, then removing 
them is inefficient, potentially resulting in estimation and interpretation errors (Gelman and Hill 
2006).To improve efficiency of estimation, avoid errors in interpretation, and preserve the 
population size of available grade crossing crashes, this study applied rigorous data imputation 
methods for handling missing data (Orchard and Woodbury 1972).  

The total number of observations is 15,639. In this study, four variables needed 
imputation: vehicle speed, train speed, driver age and driver gender. They have missing values 
for 2.7 percent for train speed (continuous variable), 5.1percent for vehicle speed (continuous 
variable), 5.3percent for driver gender (binary variable) and 16.9 percent for driver age 
(continuous variable). Missing values for variables are spread across observations. If missing 
data are simply removed from the dataset, about 23 percent of the observations will be removed, 
and 12,025 observations will remain. Given the advantages of data imputation technologies, and 
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to improve the efficiency of estimation and preserve the population size, this study applies a data 
imputation method for handling the missing information. 

The method of multivariate imputation using chained equations (MICE) is applied to 
impute missing values across several variables (Raghunathan, Lepkowski et al. 2001,Rubin 
2004,Royston 2009). The basic idea of MICE is to impute missing values of multiple variables 
iteratively via a sequential series of univariate imputation models. The MICE imputation 
procedure can be described in the following equations (StataCorp 2013): 

𝑋𝑋1
(𝑡𝑡+1)~𝑔𝑔1(𝑋𝑋1|𝑋𝑋2

(𝑡𝑡),𝑋𝑋3
(𝑡𝑡), … ,𝑋𝑋𝑛𝑛

(𝑡𝑡),  𝑍𝑍1
(𝑡𝑡),  𝑍𝑍2

(𝑡𝑡),  𝑍𝑍3
(𝑡𝑡), …  𝑍𝑍𝑘𝑘

(𝑡𝑡),𝜑𝜑1) 
𝑋𝑋2

(𝑡𝑡+1)~𝑔𝑔2(𝑋𝑋2|𝑋𝑋1
(𝑡𝑡+1),𝑋𝑋3

(𝑡𝑡), … ,𝑋𝑋𝑛𝑛
(𝑡𝑡),  𝑍𝑍1

(𝑡𝑡),  𝑍𝑍2
(𝑡𝑡),  𝑍𝑍3

(𝑡𝑡), …  𝑍𝑍𝑘𝑘
(𝑡𝑡),𝜑𝜑2) 

𝑋𝑋3
(𝑡𝑡+1)~𝑔𝑔3(𝑋𝑋3|𝑋𝑋1

(𝑡𝑡+1),𝑋𝑋2
(𝑡𝑡+1), … ,𝑋𝑋𝑛𝑛

(𝑡𝑡),  𝑍𝑍1
(𝑡𝑡),  𝑍𝑍2

(𝑡𝑡),  𝑍𝑍3
(𝑡𝑡), …  𝑍𝑍𝑘𝑘

(𝑡𝑡),𝜑𝜑3) 
… … 
𝑋𝑋𝑛𝑛

(𝑡𝑡+1)~𝑔𝑔𝑛𝑛(𝑋𝑋𝑛𝑛|𝑋𝑋1
(𝑡𝑡+1),𝑋𝑋2

(𝑡𝑡+1),𝑋𝑋3
(𝑡𝑡+1), … ,𝑋𝑋𝑛𝑛−1

(𝑡𝑡+1),  𝑍𝑍1
(𝑡𝑡),  𝑍𝑍2

(𝑡𝑡),  𝑍𝑍3
(𝑡𝑡), …  𝑍𝑍𝑘𝑘

(𝑡𝑡),𝜑𝜑𝑛𝑛) 
Where,  
X1 is the most observed variable except those with complete information; 
X2 is the second most observed variable except those with complete information; 
X3 is the third most observed variable except those with complete information; 
Xn is the least observed variable; 
Z1, Z2, Z3, …, Zk are variables with complete information; 
t is the iteration serial number, t= 0, 1, 2, … (normally between 5 and 20); 
gi is the univariate imputation model and can be of a different type (linear, logit, etc.), 

according to the type of imputing variable Xi, where i = 0, 1, 2, 3 …n; 
𝜑𝜑𝑖𝑖 is the corresponding model parameter with a uniform prior, where i = 0, 1, 2, 3 …n. 
 
MICE simultaneously imputes variables of different types by choosing the appropriate 

univariate imputation model specifications. Except for complete variables, the most observed 
variable is train speed that should be imputed first. Since it is a continuous variable, a linear 
imputation model is needed. The next variable to be imputed is the vehicle speed, for which a 
linear imputation model was applied. The imputation of missing gender information needs a logit 
model and driver age was imputed through a linear imputation model. After data imputation, all 
variables have complete information for 15,639 crashes used for data analysis.  

 
3.3 Conceptual Framework and Data Analysis 
 
Railroad grade crossing controls along with other associated factors can have direct associations 
with safety outcomes, i.e., injury severity in crashes. Such outcomes have been investigated in 
previous studies (Eluru, Bagheri et al. 2012,Russo and Savolainen 2013,Fan and Haile 2014,Hao 
and Daniel 2014,Zhao and Khattak 2015), along with associations of pre-crash behaviors (Eluru, 
Bagheri et al. 2012,Russo and Savolainen 2013). The pathways embedded in crossing controls, 
pre-crash behaviors and crash injury severity are generally underexplored. A study by Eluru et al. 
showed that gate controls were associated with the lowest injury severity given a crash, which is 
a direct association. The study also revealed that drivers who drove around or through the gates 
were most likely to be injured severely (Eluru, Bagheri et al. 2012). Given that driving around or 
through the gates can only occur at crossings equipped with gates, the presence of gates may 
induce this type of dangerous behavior, if some motorists approaching active controls are likely 
to violate the intent of the control. Such violations are positively associated with higher injury 
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severity, which is the indirect association between gates and the injury severity through pre-crash 
behavior.  
 The conceptual framework presented in Figure 1 shows that crossing controls can have 
both a direct association with the safety outcomes and indirect association (dashed line) through 
dangerous approaching behaviors (captured by pre-crash behaviors). The path analysis helps 
untangle the two associations, while controlling for other key variables such as train and vehicle 
speeds, control activation warning time, and driver demographics (Alwin and Hauser 1975).  
 This study develops a system of 2 equations that specify the linkages between correlates 
of pre-crash behaviors and injury severity. The intent of the first linkage 𝛽𝛽(𝑖𝑖) is to explore the 
correlates of pre-crash behaviors, defined as drivers’ actions prior to the event of a crash. Using 
their judgments, drivers can choose from a set of actions that can include stopping or not 
stopping at gates. Their actions are discrete choices that a driver makes prior to the event of a 
crash, justifying the use of discrete choice modeling techniques (Anas 1983,Abdel-Aty and 
Abdalla 2004). Specifically, due to its simplicity and ease of interpretation, the multinomial logit 
model is used for estimation, i.e., to quantify correlates of pre-crash behaviors. 

The pre-crash behaviors available in the database include five categories:  
 1) “Drove around or thru the gate.” This pre-crash behavior is clearly in non-compliance 
with controls; this can be due to a number of reasons including a desire to reduce delay, and/or 
poor sight distance at grade crossings. In such cases, this will be a deliberate attempt to cross 
before the arrival of a train and it will be coded as trespassing (FRA 2011). In crashes, males 
were found to be much more likely to engage in driving around or thru gates than females 
(Cooper and Ragland 2012).  
 2) “Stopped and then proceeded.” This pre-crash behavior indicates initial compliance 
with controls.  
 3) “Did not stop.” In this case, the vehicle should be moving over the crossing, with at 
least some speed at the time of collision. This pre-crash behavior also represents non-compliance 
with grade crossing controls.  
 4) “Stopped on crossing.” This pre-crash action can be attributed to factors such as 
vehicle malfunction , inability of vehicle to clear the tracks (getting stuck), or vehicle getting 
trapped as gates come down, and deliberate action by the motorist.. Whether the person is in the 
vehicle at the time of collision is critical to injury severity.  
 5) “Other behaviors.” These behaviors can include suicide or attempting suicide, going 
thru/around temporary construction barriers, and shoving onto the track. Ideally, such behaviors 
should be analyzed separately from the other behaviors as they are a mixture of intentional and 
unintentional harm. However, data availability precludes this.    

The second model uncovers the correlations between the injury severity and associated 
factors including the pre-crash behaviors. Given the ordinal nature of the injury severity, the 
ordered logit model is applied due to its simplicity and ease of interpretation (Eluru, Bagheri et 
al. 2012,Russo and Savolainen 2013). The following equations describe the path analysis 
structure, as shown in Figure 1 (Khattak and Rocha 2003): 

𝑌𝑌1 =  𝑋𝑋𝑋𝑋(𝑖𝑖) + 𝜀𝜀1                                                                                                                 (1) 
𝑌𝑌2 =  𝑋𝑋𝑋𝑋 + 𝑌𝑌1𝛾𝛾 + 𝜀𝜀2                                                                                                         (2) 
Where,  
𝑌𝑌1 is the pre-crash behavior; 
 𝛽𝛽(𝑖𝑖) is a set of coefficients corresponding to the ith behavior in the multinomial logit 

model; 
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X is a vector of explanatory variables that include grade crossing controls; 
𝑌𝑌2 is the safety outcome, i.e., injury severity measured on ordinal scale; 
𝛽𝛽 is a set of coefficients of X in the ordered logit model; 
𝛾𝛾 is the association of driver behavior with injury severity, estimated in the ordered logit 

model; 
𝜀𝜀1 and 𝜀𝜀2 are error terms, which are assumed to be uncorrelated. 
 
In the multinomial logit model, the corresponding probability of each outcome (i.e., one 

type of pre-crash behaviors) is given by (StataCorp 2013): 

Pr(𝑌𝑌1 = 1) =
exp (𝑋𝑋𝑋𝑋(1))

exp (𝑋𝑋𝑋𝑋(1)) + exp (𝑋𝑋𝑋𝑋(2)) + ⋯+ exp (𝑋𝑋𝑋𝑋(𝑛𝑛))
  (3) 

Pr(𝑌𝑌1 = 2) =
exp (𝑋𝑋𝑋𝑋(2))

exp (𝑋𝑋𝑋𝑋(1)) + exp (𝑋𝑋𝑋𝑋(2)) + ⋯+ exp (𝑋𝑋𝑋𝑋(𝑛𝑛))
 (4) 

……  

Pr(𝑌𝑌1 = 𝑖𝑖) =
exp (𝑋𝑋𝑋𝑋(𝑖𝑖))

exp (𝑋𝑋𝑋𝑋(1)) + exp (𝑋𝑋𝑋𝑋(2)) + ⋯+ exp (𝑋𝑋𝑋𝑋(𝑛𝑛))
 (5) 

Where, 
𝑌𝑌1 is the outcome variable, i.e., pre-crash behaviors such as driving around gates; 
X is a vector of explanatory variables, e.g., grade crossing controls; 
𝛽𝛽(𝑖𝑖) is a set of coefficients corresponding to the ith behavior, 𝑖𝑖 = 1, 2, …, n.  
 
Based on the findings from injury severity studies, the ordered logit/probit models were 

found to be appropriate (Savolainen, Mannering et al. 2011,Yasmin and Eluru 2013,Mannering 
and Bhat 2014,Yasmin, Eluru et al. 2014,Ye and Lord 2014).Therefore, this study uses an 
ordered logit regression model to explore the relationships between injury severity and pre-crash 
behaviors and crossing controls. In this case, 𝑌𝑌2 =1 represents a non-injury crash 𝑌𝑌2 =2 is non-
fatal injury), and 𝑌𝑌2 =3 is fatal injury; the predicted probabilities for each category are (StataCorp 
2013) :  

Pr(𝑌𝑌2 = 1) =
exp (𝛼𝛼1 − 𝑋𝑋𝑋𝑋) 

1 + exp (𝛼𝛼1 − 𝑋𝑋𝑋𝑋) 
 (6) 

Pr(𝑌𝑌2 = 2) =
exp (𝛼𝛼2 − 𝑋𝑋𝑋𝑋) 

1 + exp (𝛼𝛼2 − 𝑋𝑋𝑋𝑋)
−

exp (𝛼𝛼1 − 𝑋𝑋𝑋𝑋) 
1 + exp (𝛼𝛼1 − 𝑋𝑋𝑋𝑋) 

 (7) 

Pr(𝑌𝑌2 = 3) = 1 − [Pr(𝑌𝑌2 = 1) + Pr(𝑌𝑌2 = 2)] =  1 −
exp (𝛼𝛼2 − 𝑋𝑋𝑋𝑋)

1 + exp (𝛼𝛼2 − 𝑋𝑋𝑋𝑋)
 (8) 

Where,  
𝑌𝑌2 is the injury severity level; 
X is a vector of explanatory variables, e.g., crossing controls and pre-crash behaviors; 
𝛽𝛽 is a set of coefficients of X. 
 
Unlike the multinomial logit model where each outcome can have its own set of 

coefficients, the ordered outcomes model shares one set of coefficients but with different 
intercepts which are the cut-points 𝛼𝛼1 and 𝛼𝛼2 in above model equations (StataCorp 2013).  

Path analysis allows two or more models to be estimated simultaneously. The estimated 
parameters can be used to calculate the direct, indirect and total effects. Marginal effects provide 
the change in response values associated with one unit change in explanatory variables. For 
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ordinary least squares models, the parameters are the marginal effects. However, for other 
models estimated in this study, i.e., the multinomial and ordered logit regression models, the 
estimated coefficients are the log of odds ratio. To interpret modeling results and obtain the 
direct, indirect and total effects of variables, the marginal effects for multinomial logit model 
must be calculated as follows (Wang 2008):  

𝜕𝜕Pr (𝑌𝑌1 = 𝑖𝑖|𝛽𝛽(𝑖𝑖)𝑋𝑋)
𝜕𝜕𝜕𝜕

=
exp�𝑋𝑋𝛽𝛽(𝑖𝑖)� 𝛽𝛽(𝑖𝑖)

′ + exp�𝑋𝑋𝛽𝛽(𝑖𝑖)� [∑ exp�𝑋𝑋𝛽𝛽(𝑗𝑗)� (𝛽𝛽(𝑖𝑖)
′−𝛽𝛽(𝑗𝑗)

′ )]𝑛𝑛
𝑗𝑗=1

[1 + ∑ exp�𝑋𝑋𝛽𝛽(𝑗𝑗)�]𝑛𝑛
𝑗𝑗=1

2 
 (9) 

Where, 
𝑌𝑌1 is the outcome, i.e., pre-crash behaviors; 
𝛽𝛽(𝑖𝑖)is a set of coefficients corresponding to the ith outcome, 𝑖𝑖 = 1, 2, …, n; 
𝛽𝛽(𝑗𝑗)is a set of coefficients corresponding to the jth outcome, 𝑗𝑗 = 1, 2, …, n; 
X is a vector of explanatory variables.  
 
Note that in multinomial logit models, the signs of marginal effects are not always 

consistent with the sign of the coefficients (β), while in some logit regressions (e.g., binary logit) 
they are consistent. This is because the marginal effect depends on the values and levels of other 
variables. As the values of other variables and the variables in equation change, the signs of the 
marginal effect can also change. Note that the signs of marginal effects are determined by 
 𝛽𝛽(𝑖𝑖)

′−𝛽𝛽(𝑗𝑗)
′ , which is the differences of coefficients under different outcomes. The marginal 

effects show the probability change of one outcome compared with the base level chosen among 
the five types of pre-crash behaviors (Wang 2008).  

The marginal effects for the ordered logit model can be computed as follows (Wang 
2008):  

𝜕𝜕Pr (𝑌𝑌2 = 1|𝛽𝛽𝛽𝛽)
𝜕𝜕𝜕𝜕

=
exp(𝛼𝛼1 − 𝑋𝑋𝑋𝑋)

[1 + exp(𝛼𝛼1 − 𝑋𝑋𝑋𝑋)]2 
𝛽𝛽′ (10) 

𝜕𝜕Pr (𝑌𝑌2 = 2|𝛽𝛽𝛽𝛽)
𝜕𝜕𝜕𝜕

= −
exp(𝑋𝑋𝑋𝑋 − 𝛼𝛼2)

[1 + exp(𝑋𝑋𝑋𝑋 − 𝛼𝛼2)]2 
𝛽𝛽′ −

exp(𝛼𝛼1 − 𝑋𝑋𝑋𝑋)
[1 + exp(𝛼𝛼1 − 𝑋𝑋𝑋𝑋)]2 

𝛽𝛽′ (11) 

𝜕𝜕Pr (𝑌𝑌2 = 3|𝛽𝛽𝛽𝛽)
𝜕𝜕𝜕𝜕

=
exp(𝑋𝑋𝑋𝑋 − 𝛼𝛼2)

[1 + exp(𝑋𝑋𝑋𝑋 − 𝛼𝛼2)]2 
𝛽𝛽′ (12) 

Where,  
𝑌𝑌2 is the injury severity level; 
X is a vector of explanatory variables, e.g., crossing controls and pre-crash behaviors; 
𝛽𝛽 is a set of coefficients of X; 
𝛼𝛼1 is the constant term for predicting level-1 outcome; 
𝛼𝛼2 is the constant term for level-2 outcome. 
Marginal effects in ordered logit model are the changes of probability from a lower level 

to a higher level associated with a unit change in the independent variable.  
 
 

SECTION 4: FINDINGS 
 
4.1 Descriptive Analysis 
 
Table 3 provides the descriptive statistics, including before and after data imputation. The 
imputation results show that imputed variables have a similar distribution with their original 
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distributions. The data were error checked. The ranges and distributions of key variables were 
reasonable, compared with equivalent databases used in similar studies (Raub 2009,Eluru, 
Bagheri et al. 2012,Russo and Savolainen 2013,Hao and Daniel 2014).  

Gates, flashing lights and audible warnings can be individually or simultaneously present 
at railroad grade crossings. This study uses the following combinations of active controls: 1) 
gates only, 2) flashing lights only, 3) audible warning device only, 4) gates and flashing lights, 5) 
gates and audible, 6) flashing lights and audible, and 7) gates and flashing lights and audible 
warning. Among the 15,639 collisions, 26.18 percent occurred at crossings equipped with gates 
and flashing lights and audible warning devices, 10.72 percent with flashing lights and audible 
warning devices, and 13.79 percent with STOP signs. About 53.6 percent were active crossings 
with a recommended a 20 second minimum warning time, 1.4 percent with a warning time 
longer than 60 seconds and 2.18 percent with a short warning time (less than 20 seconds, or not 
activated when collisions occurred). 
Fatal injury, non-fatal injury and property-damage-only (PDO) crashes constitute 8.02%, 25.52% 
and 66.46% of the 15,639 reported crashes respectively. Drivers’ pre-crash behaviors were 
extracted specifically from the database. This study treats pre-crash behaviors as an intermediate 
safety outcome and uses the path analysis to link crossing controls and injury severity using 
driver behavior as a bridge. Pre-crash behaviors were reported in five categories: 1) “Drove 
around or thru the gate,” 2) “Stopped and then proceeded,” 3) “Did not stop,” 4) “Stopped on 
crossing,” 5) and other behaviors, e.g., suicide or attempting suicide, going thru/around 
temporary construction barriers, and shoving onto the track. Note that nearly one-half of drivers 
were out of their vehicle at the time their vehicle was “Stopped on crossing”. Therefore, some of 
these drivers were able to get out of harm’s way and did not receive severe injuries.  A study by 
Eluru et al. did not split the cases of drivers stopping on crossing and thus found that drivers who 
stopped on crossings were the least likely to be injured or killed, which is counterintuitive 
(Eluru, Bagheri et al. 2012). By splitting the pre-crash behavior of “Stopped on crossing” further 
into driver inside or out of their vehicle, this study was able to obtain deeper insights into the role 
of pre-crash behaviors.   
 
4.2 Driver Behavior and Crossing Controls 
 
Table 4 presents the results of pre-crash behavioral propensities, given a set of factors. The 
goodness of fit for the final model seems reasonable, and the parameter signs are as expected. 
The models presented in this paper were selected based on theoretical considerations, i.e., 
hypotheses shown in the conceptual framework) and statistical properties that include goodness 
of fit, statistical significance of the overall model and specific variables, as well as their 
magnitude and signs. The selected models contain some statistically insignificant variables, 
either because there is strong theoretical justification to include them or they are part of a group 
of variable.  

Note that the pre-crash driver behavior – “Drove around or thru the gate” requires the 
presence of gates. Therefore, cases without gate controls are not relevant and excluded from the 
model. The results show strong associations between behaviors and different settings of gate 
controls. Compared with the base of “gates, flashing lights, and audible warnings,” the chances 
of driving around or thru gates were higher when gates did not have flashing lights and/or 
audible warnings. The marginal effects show a higher possibility (3.7%, 4.0% and 6.5%) of 
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driving around or thru the gate when crossings were equipped with gates only, gates and flashing 
lights, and gates and audible warnings, respectively.  

Importantly, the results show that compared with the base (a fully controlled crossing) 
there is a substantially higher possibility of not stopping at crossings without gates, as shown in 
Table 4. For example, when only flashing lights and audible warnings are present, the chances of 
not stopping were higher by 43.9 percent, given crashes. Furthermore, the chances of “Stopped 
on crossing (and driver in vehicle)” were higher when crossings were passively controlled, i.e. 
when STOP sign was present (5.0 percent higher) or only Crossbuck was present (7.1 percent 
higher).  

Advanced warning time had significant correlations with pre-crash behaviors. Note that 
warning time refers to how many seconds the controls are activated before the train enters the 
crossing. The base for warning time in the model is minimum warning time of 20 seconds, 
recommended by the Federal Railroad Administration (Bowman 1987,Richards, Heathington et 
al. 1990). Results show that active controls with warning time less than 20 seconds were 
associated with a lower chance of first two behaviors. Notably, if the warning time is less than 20 
seconds, there is a 25.8 percent higher chance of not stopping (“Did not stop” behavior).  

Higher train speeds were related to increasing occurrence of “Stopped on crossing” and 
decreasing occurrences of other behaviors. The first three behaviors were associated with higher 
vehicle speeds. Before crashes, male drivers were more likely to drive around or through the 
gates, less likely to stop first and then proceed, and more likely to stop on crossings but get out 
of vehicle. Older drivers were more likely to stop first and then proceed, less likely to not stop, 
and more likely to be in the vehicle when the vehicle stopped on the rail crossing. In addition, 
pick-up truck drivers are less likely to go around the gates compared with passenger car drivers. 

 
4.3 Injury Severity and Crossing Controls 
 
Table 5 presents the correlates of injury severity tested by estimating ordered logit regression 
model. The final model specification was selected based on theoretical considerations and 
empirical properties of the model. All pre-crash behaviors were significantly correlated to driver 
injury severity and their effects are substantial. When drivers “Drove around or thru the gate” or 
“Did not stop” they had a substantially higher chance injury in crashes, at 40.0 and 39.5 percent 
respectively, than the base behavior, which was “Stopped on crossing (and driver out of 
vehicle).” For “Stopped and then proceeded” and “Stopped on crossing (driver in vehicle)” the 
chances of injury were higher by 33.2 and 23.7 percent, respectively.  

Crossing controls did not have a strong direct relationship with driver injury severity. For 
crashes occurring at active crossings with warning time less than 20 seconds, there was a 9.4 
percent higher chance of injury, compared with crossings given at least 20 second warning time. 

As expected, train speed and vehicle speed had a strong association with the injury 
severity. A 10 mph increase in trains approaching speed was associated with 8 percent higher 
possibility of drivers getting injured. A 10 mph increase in vehicle collision speed was related to 
a 4 percent lower possibility of drivers getting injured. The model also shows that male drivers 
were less likely to get injured in crashes than female drivers. Older drivers were more likely to 
get injured, given a crash.  

 
4.4 Path Analysis 
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From the above discussion, we know that the direction associations between controls and injury 
severity were not very significant. Nevertheless, some crossing controls have very significant 
correlations with pre-crash behaviors which were in turn significantly associated with injury 
severity. Crossing controls have substantial indirect impacts on injury severity through pre-crash 
behaviors. Path analysis allows us to compare both direct and indirect effects and combine them 
to provide total impacts of controls on injury severity, as outlined in the structure presented in 
Figure 1. The impact of each variable on pre-crash behaviors was calculated by using the 
marginal effects from the multinomial logit regression model, while the impact of each variable 
on levels injury severity was calculated by using the marginal effects from the ordered logit 
regression model.  

Table 6 shows the associations—the total effect is the sum of the direct and indirect 
effects manifested through pre-crash behaviors. Note that, non-statistically significant effects 
were omitted for clarity. The injury severity model in Table 5 shows that “Did not stop” was 
associated with a 39.5 percent higher probability of driver getting injured, while the presence of 
Crossbuck-only was related to a 45 percent higher chance of this behavior. Thus, through this 
behavior, the indirect impact of Crossbuck-only on increasing the probability of driver getting 
injured is 45% × 39.5% = 17.8%. The indirect effect of Crossbuck-only through other behaviors 
on increasing/deceasing injury probability was 0%, -0.5%, 1.7% and 0% respectively. The model 
in Table 5 shows that the direct effect of Crossbuck-only on injury severity was not statistically 
significant (at p-value = 0.05 level), thus the direct impact of gates on injury severity was zero 
percent. The net or total impact of Crossbuck-only at crossings on the probability of driver 
getting injured is 0%-0.5%+17.8%+1.7%+0%  = 18.9% (or an overall 18.9 percent higher 
chance of injury). In the same way, relationship between other controls and injury severity can 
be interpreted through path analysis. In general, the cases with gates are associated with lower 
chance of injury compared with other cases, especially the passive controls (i.e., STOP sign and 
Crossbuck-only). This makes sense because gates more effectively prevent dangerous driving 
behaviors. Note that, this study also estimated the ordered logit model for injury severity without 
the pre-crash behaviors (modeling results are available from authors). The results show that not 
all direct effects of crossing controls on injury severity are statistically significant. Clearly, path 
analysis better connects the associations of controls on injury through pre-crash behaviors. 

The results also show that the warning time less than 20 seconds was related to a 19 
percent higher chance of injury, compared with a minimum of 20 second warning time. Higher 
train approaching speed and vehicle collision speed also had an association with higher injury 
severity. Male drivers were less likely to be injured in crashes perhaps because of their better 
survivability. Old drivers were more likely to get injured in crashes.  

 
 

SECTION 5: DISCUSSION 
 
By investigating the role of pre-crash behaviors, i.e., their correlations with injury severity in 
crashes, this study uncovered the correlations between injury severity and the type of crossing 
controls. The study found that outcomes of crashes at passive crossings (e.g., STOP signs or only 
Crossbuck signs) are more severe than those of crashes at active crossings (i.e., gates, flashing 
lights and audible warning devices). Some researchers have argued against the use of passive 
controls (e.g., highway STOP signs) at grade crossings. Burnham’s study found that only 18 
percent motorists were alerted to the STOP signs and 82 percent were either confused or semi-
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confused about the presence of STOP signs at grade crossings (Burnham 1995). Among all types 
of crossings, those with only Crossbuck signs are associated with the highest probability of 
injuries given a crash. It is notable that compared with STOP signs and active controls, 
Crossbucks may not be able to gain a drivers’ attention (Sanders, McGee et al. 1978) and they 
also have higher crash rates (Eck and Shanmugam 1987). 
 Within actively controlled crossings, crashes at crossings with gate controls are related to 
a lower chance of injury, compared with crossing that do not have gates (i.e., only flashing 
lights, only audible devices, or flashing lights plus audible devices). The relatively large 
difference can be explained by the impact of gates on pre-crash behaviors. Flashing lights and 
audible warnings are used to warn drivers about the presence of a train. However, they do not 
deter dangerous behaviors as much as gates do, by physically stopping drivers from crossing 
when gates are lowered. Nevertheless, if drivers notice that the train is still far away from the 
crossing (i.e., they have longer warning time), they may still decide to attempt to negotiate the 
crossing maneuver. Meeker et al. found that the addition of automatic gates reduced the 
likelihood of drivers crossing in front of trains from 67 to 38percent (Meeker, Fox et al. 1997). 
Correspondingly, this study revealed that gates are related to an average 30percent lower chance 
of the “Did not stop” behavior. Within gate crossings, the differences in injury severities are not 
substantial but they cannot be ignored. The study revealed that gate crossings with flashing lights 
but not bells are more likely to be associated with driving around or through the gates, which is 
intentional trespassing behavior (FRA 2011). The violation of gates is in turn related to 40 
percent higher chances of injuries than other pre-crash behaviors. As a result, the presence of 
“Gates plus Flashing lights” is associated with 2.80 percent higher levels of injuries. The two 
other types of gate crossings missing flashing lights, or bells, or both have the same gate 
violation issue.   
 As mentioned in the literature review, the current Crash Modification Factors (CMFs) 
documented in the Clearinghouse website (http://www.cmfclearinghouse.org/) are for the crash 
rate reductions. Information about the changes of the crash injury severity by implementing 
certain countermeasures at highway-rail grade crossings is not available. Lack of information 
about severity may miss some of the benefits if reductions in injury severity are not accounted 
for. While this study is correlational, it provides information about the injury severity, e.g., with 
only flashing lights and audible devices there was a 16.2 percent higher chance of injury, 
compared to crossing with gates, flashing lights and audible devices. Thus, adding gates to a 
crossing with flashing lights and audible warnings, on average, is correlated with 16.2 percent 
lower chances of injury, given a crash (in addition to reducing crash frequency). Note that the 
initial CMF for installing gates at crossings that previously had flashing lights and audible 
devices is 0.55 (Elvik and Vaa 2004), indicating that adding gates can reduces the crashes by 45 
percent. Using the results from this study, a CMF related to injury severity can be developed.  

Table 7 presents a simple illustrative example that integrates the changes in crash rates 
and injury severity. Suppose there are 100 crashes in a year at a crossing with flashing lights and 
bells. By adding gates the expected number of crashes will be 55. The initial distribution of 
injury crashes at crossings with flashing lights and bells is 36.87 percent, by examining the raw 
crash data used in this study. We can assume that out of 100 crashes, 36.87 are injury crashes 
and the rest (63.13) are PDO crashes; with the installation of gates the distribution will be 20.28 
injury crashes and 34.72 PDO crashes. Installation of gates is associated with 16.2 percent lower 
injury severity, meaning that the new distribution of injury crashes would be 30.90% (= 36.87% 
× (1 – 0.162)). Therefore the modified distribution will be 16.99 injury (=55 × 30.90%) and 
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38.01 PDO crashes (= 55 – 16.99). According to the raw crash data used in this study, the 
observed probability of injury crashes at crossings with gates, flashing lights and bells, is 30.18 
percent, which is very close to the expected distribution of injury crashes (i.e., 30.9 percent). 
Generally, the distribution of expected injury and PDO crashes after countermeasure 
implementation will be given by the following equations: 

 
Expected Number of Injury Crashes-After = (CMF × N) × PInj × (1 – CMFSEV)                        (13) 
 
Expected Number of PDO Crashes-After = (CMF × N) – (CMF × N) × PInj × (1 – CMFSEV)   (14) 
 
Where, 
CMF is the Crash Modification Factor; 
N is the number of crashes before implementation of countermeasure; 
PInj is the probability of injury, between 0 and 1 before countermeasure implementation; 
CMFSEV is the Crash Modification Factor for injury severity. 

  
 

SECTION 6: LIMITATIONS 
 
While several key factors were considered in this study, there might be other factors (such as 
weather or terrain) that may be important to injury severity. Thus, this study is limited by the 
number of factors considered in the analysis. Hauer et al. has pointed out that the safety of a rail-
highway grade crossing should be estimated by mixing information about causal factors (Hauer 
and Persaud 1987). However, firm causal inferences could not be drawn in this study given the 
cross-sectional nature of the data.  

Another limitation of this study is the inherent unpredictability of human behavior. Even 
though certain outcomes may be correlated with certain human characteristics, driver behavior is 
a moving target and it changes over time.   

The data were taken from an outside source and analyzed using parametric statistical 
methods. As a non-observational study, researchers did not control the variation in the variables 
and also some of the variables had missing data. The data imputation model was applied to 
recover missing data. However, the imputed data cannot be independently verified.   

Since the database spans over 10 years, there may be variation in reporting procedures. 
There may be errors or discrepancies between reported data values, e.g., coding errors, coverage 
and geo-coding errors, or measurement errors since crash inspectors/investigators are typically 
not on the scene when a crash occurs.  

 
 

SECTION 7: CONCLUSIONS AND CONTUNING RESEARCH 
 
Many previous studies have not included crossing controls in models of injury severity, 
indicating an assumption that crossing controls are not significantly correlated with injury 
severity, given a crash. This study explicitly investigated the role of controls and found that 
crossing controls do not have significant direct association with injury severity. However, 
crossing controls were found to be significantly correlated with pre-crash behaviors and also pre-
crash behaviors were significantly associated with injury severity. Thus through path analysis, 
this study uncovered the indirect role of crossing controls with injury severity. Furthermore, 
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using path analysis, this study answers why some controls are associated with higher injury 
severity, owing to their impacts on motorist behaviors prior to the event of a crash.  
 This study found that crashes occurring at rail crossings equipped with gates are 
generally less injurious. More broadly, active controls were associated with lower driver injuries 
compared with passive controls, given a crash. Also, active crossings with short warning times 
pose higher risks of injuries in crashes at grade crossings. A minimum of 20 second warning 
time seems appropriate at grade crossings, based on evidence from injury data. Relationships 
between driver behavior, injury severity and other factors (trains speed, vehicle speed, and 
demographics) were also quantified in this study. Higher train speed and vehicle speeds were 
statistically significantly associated with higher injury severity, and females and older drivers 
were more likely to be injured in railroad grade crossing crashes, consistent with the findings 
from previous studies (Russo and Savolainen 2013,Zhao and Khattak 2015). 

For practicing engineers and planners, the study provides a quantification of injury risk 
factors and points to risky behaviors that are associated with higher injury severity. Such 
behaviors (e.g., not stopping or driving around gates) may be minimized through additional 
countermeasures that can further lower injury severity. This study helps us understand that 
potential effectiveness of control treatments is likely to depend on how drivers respond to 
treatments and how they change their behaviors. Specifically, this study generates information 
that quantifies reductions in injury severity associated with various controls. It provides valuable 
information for reductions in severity that is relevant to Crash Modification Factors used in 
Highway Safety Manual. For example, adding gates to a crossing with flashing lights and audible 
warnings is associated with 16.2 percent lower chances of injury, given a crash, in addition to 
reducing crash frequency. Integrating the initial CMF from the Highway Safety Manual, this 
study provides information that is useful for quantifying changes in injury severity distributions, 
post implementation. The results of this study are also of national interest because the crashes 
analyzed in the study are dispersed throughout the country.  

This study reveals the correlations between crossing controls and pre-crash behaviors, 
which is useful in explaining safety outcomes. More research is needed to explain why drivers 
chose their pre-crash actions using the narrative information recorded in the database (Form 
6180.57). Future research should do a deeper exploration of spatial distributions, injury severity, 
and the role of dangerous pre-crash driver behaviors, especially of intentional trespassing 
behaviors such as driving around or through gates. While this study found that creating new 
variables—whether a vehicle stopped on the tracks had the driver or not was critical to injury 
outcomes, exploring why vehicles stop on crossings and how to prevent such stoppings can be 
helpful. Also, other aspects of safety outcomes can be observed at railroad grade crossings by 
integrating more databases, such as Railroad Injury and Illness Summary (Form 6180.55a) and 
Rail Equipment Accident/Incident Report (Form 6180.54). These two databases provide more 
details of injuries, e.g., injury nature, medication care, and the rail equipment damage caused by 
crashes. The data can provide a broader sense of the seriousness and cost of train-car crashes. 
Collisions between trains and other types of vehicles, such as trucks and buses, can also be 
explored using the methodology developed by this study. More research is also needed to better 
support the decisions of closing railroad grade crossings or going to passive or active controls, 
and providing insights to agencies and railroad companies regarding countermeasures for 
improving safety at highway-rail grade crossings. 
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Table 1. Selected Studies on Crash Frequencies/Rates 
 

Authors/Year Methodology Crossing controls Key findings 

Millegan et al., 
2009 

Negative 
binomial STOP signs vs. Crossbucks STOP signs  46.95% lower crash 

rates 

Yan et al., 
2010 

Logistic 
regression STOP signs vs. Crossbucks 

STOP signs  less “did not stop” 
and “stopped on crossing” 

behaviors 
STOP signs  higher crash rate 

reductions at higher volume 
crossings 

Yan et al., 
2010 

Hierarchical 
tree-based 
regression 

model 

STOP signs vs. Crossbucks STOP signs  varying crash rate 
reductions at different conditions 

Raub, 2006 Descriptive 
statistics STOP signs vs. Crossbucks 

STOP signs  60% higher crash 
rates by cross-sectional comparison 

STOP signs  28% higher crash 
rates by before-and-after 

comparison 
Mok and 

Savage, 2005 
Negative 
binomial Active vs. passive controls Active controls  Lower crash 

frequencies 

Raub, 2009 Descriptive 
statistics 

Active (gates and  flashing 
lights) vs. passive controls 

(STOP and Crossbuck signs) 

Gates  4.1 crashes per 10 MCV 
Flashing lights  5.1 crashes per 

10 MCV 
STOP signs  37.4 crashes per 10 

MCV 

Park and 
Saccomanno, 

2005 

Poisson 
regression 

Gates vs. passive signs 
Flashing lights vs. passive 

signs 

Gates (vs. passive signs)  CMF = 
0.34 

Flashing lights (vs. passive signs) 
 CMF = 0.26 

Saccomanno et 
al., 2007 

Empirical 
Bayesian 

Bells vs. flashing light 
crossings 

The addition of bells  CMF = 
0.45 

Austin and 
Carson, 2002; 
Elvik and Vaa, 
2004; Elvik et 

al., 2009 

Poisson 
regression 
Negative 
binomial 

Meta-analysis 

Flashing lights vs. passive 
signs 

Gates vs. flashing lights and 
bells 

Gates vs. passive signs 

Flashing lights (vs. passive signs) 
 CMF = 0.49 

Gates (vs. flashing lights and bells) 
 CMF = 0.55 

Gates (vs. passive signs) CMF = 
0.33 

NOTES: CMF = Crash Modification Factor 
 
 
 
 

Table 2. Selected Studies on Crash Injury Severity and Behavioral Considerations 
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Authors/Year Methodology Crossing 
controls 

Behavioral 
considerations Key finding 

Raub, 2006 Descriptive 
statistics Yes No 

STOP signs  12.4% crashes were fatal 
Gates  31.8% crashes were fatal 

Flashing lights  25% crashes were 
fatal 

Eluru et al., 
2012 

Ordered logit 
model (Latent 

segmented) 
Yes Yes 

Gates  Lowest injury severity 
Flashing lights (vs. STOP signs)  

Higher injury severity 
Drove around or through the gates  

Higher injury severity 

Cooper et al., 
2012 

Descriptive 
statistics Yes Yes 

Gates  8.8% crashes were fatal 
Drove around gates  20.6% crashes 

were fatal 

Hao and 
Daniel, 2014 

Descriptive 
statistics for the 

control and 
injury severity 
Ordered probit 
model for other 

factors 

Yes No 

Active controls  9.11% crashes were 
fatal 

Passive controls  6.82% crashes were 
fatal 

Higher train/vehicle speed  higher 
injury severity 

Hu et al., 
2010 

Generalized 
logit model No No 

No findings on crossing controls 
Law enforcement cameras  lower 

injury severity 

Russo and 
Savolainen, 

2013 

Ordered logit 
model No Yes 

No findings on crossing controls 
Did not stop  Higher injury severity 
Higher train/vehicle speed  Higher 

injury severity 
Older drivers, females  Higher injury 

severity 
Fan and Haile, 

2014 
Multinomial 
logit model No No Higher train/vehicle speed  Higher 

injury severity 

Zhao and 
Khattak, 2015 

Multinomial 
logit model 

Ordered probit 
model 

Random 
parameter logit 

model 

No No 

No findings on crossing controls 
Ordered probit model is less suitable for 
modeling injury severity than other two 

models 
Higher train/vehicle speed  Higher 

injury severity 
Older drivers, females  Higher injury 

severity 
 

 
 

Table 3. Descriptive Statistics for Railroad Grade Crossing Crashes-Fra Database 
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Variables N Frequency Mean or Percent Std. Dev. Min Max 

Crossing Control 

Active 
Crossing 

Gates 15639 291 1.86% 0.135 0 1 
Flashing lights 15639 1145 7.32% 0.260 0 1 
Audible - Only 15639 45 0.29% 0.054 0 1 

Gates + Flashing lights 15639 1474 9.43% 0.292 0 1 
Gates + Audible 15639 175 1.12% 0.105 0 1 

Flashing lights + Audible 15639 1676 10.72% 0.309 0 1 
Gates + Flashing lights + Audible 15639 4095 26.18% 0.440 0 1 

Passive 
Crossing 

STOP sign 15639 2157 13.79% 0.345 0 1 
Crossbuck - Only 15639 3286 21.01% 0.407 0 1 

Other 15639 896 5.73% 0.232 0 1 
No controls 15639 399 2.55% 0.158 0 1 

Advanced Warning Time 
Passive crossing (no advanced warning time) 15639 6692 42.79% 0.495 0 1 

Warning time (>60 seconds) 15639 224 1.43% 0.119 0 1 
Warning time (20~60 seconds) 15639 8382 53.60% 0.499 0 1 
Warning time (<20 seconds) 15639 341 2.18% 0.146 0 1 

Collision Speed 
Vehicle speed (Tidwell Jr and Humphreys) - before imputation 14838  9.607 13.200 0 100 
Vehicle speed (Tidwell Jr and Humphreys) - after imputation 15639  9.724 13.083 0 100 
Train speed (Tidwell Jr and Humphreys) - before imputation 15219  29.214 18.623 1 95 
Train speed (Tidwell Jr and Humphreys) - after imputation 15639  29.131 18.580 1 95 

Socio Demographics 
Driver gender (Male) - before imputation 14811 9996 67.49% 0.468 0 1 
Driver gender (Male) - after imputation 15639 10540 67.40% 0.469 0 1 
Driver age (Year) - before imputation 13002  40.955 18.719 10 99 
Driver age (Year) - after imputation 15639  40.873 18.523 10 99 

Vehicle type (Auto) 15639  0.701 0.458 0 1 
Vehicle type (Pick-up) 15639 3741 23.92% 0.427 0 1 

Vehicle type (Van) 15639 933 5.97% 0.237 0 1 
Pre-crash Driver Behavior 

Drove around or thru the gate 15639 2308 14.76% 0.355 0 1 
Stopped and then proceeded 15639 979 6.26% 0.242 0 1 

Did not stop 15639 6455 41.28% 0.492 0 1 
Stopped on crossing (in vehicle) 15639 1549 9.90% 0.299 0 1 

Stopped on crossing (out of vehicle) 15639 2200 14.07% 0.348 0 1 
Other 15639 2148 13.73% 0.344 0 1 

Driver Injury Severity 
PDO 15639 10394 66.46% 0.472 0 1 
Injury 15639 3991 25.52% 0.436 0 1 
Fatal 15639 1254 8.02% 0.272 0 1 
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Table 4. Models for Driver Behavior Before Crashes on Railroad Grade Crossings 
 
 

 

Pre-crash Behaviors Drove around or thru the 
gate 

Stopped and then 
proceeded Did not stop Stopped on crossing 

(in vehicle) Other behaviors 

 β(1) Marg. Effect β(2) Marg. Effect β(3) Marg. Effect β(4) Marg.  Effect β(5) Marg. Effect 
Constant -2.783 ***  -4.618 ***  -8.439 ***  -1.750 ***  -1.418 ***  Crossing Controls 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gates 0.532 ** 0.037 0.674 * 0.031 0.127  -0.030 0.536 ** 0.039 -0.639 ** -0.056 
Flashing lights -   3.753 *** -0.018 8.147 *** 0.419 2.196 *** -0.020 -0.091  -0.099 

Audible warning devices -   3.383 *** -0.030 7.470 *** 0.362 2.279 *** -0.015 0.207  -0.078 
Gates + Flashing lights 1.271 *** 0.040 0.713 *** -0.021 1.543 *** 0.077 0.262 ** -0.039 0.629 *** -0.007 

Gates + Audible warning devices 1.598 *** 0.065 0.368  -0.033 1.405 * 0.077 0.576 ** -0.017 0.768 *** -0.011 
Flashing lights + Audible warn. -   3.682 *** -0.014 8.136 *** 0.439 1.960 *** -0.028 -0.045  -0.103 

STOP sign -   4.372 *** 0.008 8.105 *** 0.378 3.202 *** 0.050 0.710  -0.089 
Crossbuck only -   4.096 *** -0.016 8.426 *** 0.450 3.566 *** 0.071 1.162  -0.087 
Other control -   4.910 *** -0.014 8.893 *** 0.393 3.677 *** 0.010 1.751  -0.075 

No control -   3.290 *** -0.029 7.451 *** 0.359 2.100 * -0.026 0.901  -0.057 
Advanced Warning Time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Passive crossing -   -0.706  -0.020 -0.049  0.059 -1.262  -0.072 -1.384  -0.070 
Warning time (>60 seconds) 0.203  0.021 -0.630  -0.027 -0.035  0.013 -0.060  0.000 -0.149  -0.013 
Warning time (<20 seconds) -0.362  -0.127 2.462 *** -0.027 5.172 *** 0.258 0.913 ** -0.081 1.713 *** 0.065 

Collision Speed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Train speed (Tidwell Jr and Humphreys) -0.007 *** -0.000 -0.027 *** -0.001 -0.016 *** -0.000 -0.011 *** -0.000 -0.007 *** -0.000 
Vehicle speed (Tidwell Jr and Humphreys) 0.794 *** 0.019 0.746 *** 0.006 0.867 *** 0.035 -0.177 *** -0.052 0.635 *** 0.017 

Socio-Demographics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Driver gender (Male) 0.182 ** 0.027 -0.509 *** -0.019 -0.190 ** 0.010 -0.418 *** -0.024 -0.258 *** -0.014 
Driver age (Years) 0.017 *** -0.000 0.030 *** 0.000 0.022 *** -0.000 0.034 *** 0.002 0.014 *** -0.000 

Vehicle type (Pick-up) 0.313 *** -0.007 0.736 *** 0.015 0.546 *** 0.003 0.460 *** 0.012 0.455 *** 0.011 
Vehicle type (Van) 0.245  -0.003 0.318  -0.003 0.443 ** 0.012 0.416 *** 0.017 0.279 * 0.003 

SUMMARY STATISTICS  Number of Observations 15639 
Pseudo-R2 0.462 

Log Likelihood at 0 -25001.7 
Log Likelihood at β 

 
 

-13451.2 
Prob > χ 2 0.000 

NOTES: Pseudo-R2= 1 – (Log Likelihood at β/Log Likelihood at 0).    Marginal effects are the changes in the dependent variable with a unit change in the independent variable.      Base level for pre-crash behavior is "stopped on crossing (out of vehicle)".     Base level for crossing control is fully protected crossing, i.e.,"gates + flashing lights + audible warnings".    Base level for warning time is "recommended 20 second minimum warning time".     Base level for vehicle type is "automobile".     Other behaviors include suicide or attempting suicide, going thru/around temporary construction barriers, and shoving onto the track, etc. 
*** = significant at a 99% confidence level; ** = significant at a 95% confidence level; * = significant at a 90% confidence level.    

74 | 8 0  
 



 

Table 5. Ordered Logit Regression Model for Injury Severity in Railroad Grade Crossing 
Crashes 

 
Independent Variables β P-value Marginal Effect 

PDO Injury Fatal 
Pre-crash Behavior 

Drove around or thru the gate 3.691 *** 0.000 -0.400 0.297 0.103 
Stopped and then proceeded 3.357 *** 0.000 -0.332 0.255 0.077 

Did not stop 3.669 *** 0.000 -0.395 0.294 0.101 
Stopped on crossing (in vehicle) 2.839 *** 0.000 -0.237 0.189 0.048 

Other behavior 3.420 *** 0.000 -0.344 0.263 0.081 
Crossing Control 

Gates -0.535 * 0.051 0.088 -0.058 -0.030 
Flashing lights -0.059  0.552 0.010 -0.006 -0.004 

Audible warning devices -0.097  0.782 0.017 -0.010 -0.006 
Gates + Flashing lights 0.136 * 0.062 -0.024 0.015 0.010 

Gates + Audible warning devices -0.137  0.453 0.024 -0.015 -0.009 
Flashing lights + Audible warn. 0.156 * 0.083 -0.028 0.017 0.011 

STOP sign -0.675  0.121 0.110 -0.070 -0.040 
Crossbuck only -0.740 * 0.089 0.122 -0.077 -0.045 
Other control -0.642  0.134 0.105 -0.069 -0.036 

No control -0.819 * 0.070 0.130 -0.088 -0.042 
Advanced Warning Time 

Passive crossing (no advanced warning time) 0.815 * 0.057 -0.141 0.083 0.058 
Warning time (>60 seconds) 0.093  0.567 -0.016 0.010 0.007 
Warning time (<20 seconds) 0.522 *** 0.000 -0.094 0.052 0.042 

Collision Speed 
Train speed (Tidwell Jr and Humphreys) 0.045 *** 0.000 -0.008 0.005 0.003 

Vehicle speed (Tidwell Jr and Humphreys) 0.021 *** 0.000 -0.004 0.002 0.001 
Socio Demographics 

Driver gender (Male) -0.290 *** 0.000 0.051 -0.031 -0.020 
Driver age (Years) 0.012 *** 0.000 -0.002 0.001 0.001 

Vehicle type (Pick-up) -0.031  0.490 0.005 -0.003 -0.002 
Vehicle type (Van) -0.053  0.500 0.009 -0.006 -0.004 

Constant (1) 5.893      Constant (2) 7.977      
SUMMARY STATISTICS       Number of Observations 15639 

Pseudo-R2 0.155 
Log Likelihood at 0 -12861.35 
Log Likelihood at β -10864.80 
Likelihood Ratio χ 2 3993.09 

Prob > χ 2 0.000 
NOTE: 
Marginal effects are the changes of probability from a lower level to a higher level with a unit change in the 
independent variable. Pseudo-R2= 1 – (Log Likelihood at β/Log Likelihood at 0) 
Base level for pre-crash behavior is "stopped on crossing (out of vehicle)."  
Base level for crossing control is fully protected crossing, i.e., "gates & flashing lights & audible warnings." 
Base level for warning time is "recommended 20 second minimum warning time".  
Base level for vehicle type is "automobile."  
Other behaviors include suicide or attempting suicide, going thru/around temporary construction barriers, and 
shoving onto the track, etc. 
*** = significant at a 99% confidence level; ** = significant at a 95%confidence level; * = significant at a 90% 
confidence level. 
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Table 6.  Direct, Indirect, and Total Effects of Variables on Injury Severity 
 
 
 

 

 Direct 
effect-
Injury 
𝛽𝛽 

Effect on pre-crash behaviors Effect of behaviors on injury Indirect effect on injury 
Total 
effect-
Injury Independent variables 𝛽𝛽(1) 𝛽𝛽(2) 𝛽𝛽(3) 𝛽𝛽(4) 𝛽𝛽(5) 𝛾𝛾1  𝛾𝛾2  𝛾𝛾3  𝛾𝛾4  𝛾𝛾5  

𝛽𝛽(1) 
* 
𝛾𝛾1  

𝛽𝛽(2) 
* 
𝛾𝛾2  

𝛽𝛽(3) 
* 
𝛾𝛾3  

𝛽𝛽(4) 
* 
𝛾𝛾4  

𝛽𝛽(5) 
* 
𝛾𝛾5  

Crossing Control 
 Gates  3.7%   3.9% -5.6% 40.0% 33.2% 39.5% 23.7% 34.4% 1.5% 0.0% 0.0% 0.9% -1.9% 0.5% 

Flashing lights   -1.8% 41.9% -2.0%  40.0% 33.2% 39.5% 23.7% 34.4% 0.0% -0.6% 16.6% -0.5% 0.0% 15.5% 
Audible warning devices   -3.0% 36.2% -1.5%  40.0% 33.2% 39.5% 23.7% 34.4% 0.0% -1.0% 14.3% -0.4% 0.0% 12.9% 
Gates + Flashing lights  4.0% -2.1% 7.7% -3.9% -0.7% 40.0% 33.2% 39.5% 23.7% 34.4% 1.6% -0.7% 3.1% -0.9% -0.3% 2.8% 

Gates + Audible warning devices  6.5%   -1.7% -1.1% 40.0% 33.2% 39.5% 23.7% 34.4% 2.6% 0.0% 0.0% -0.4% -0.4% 1.8% 
Flashing lights + Audible warn.   -1.4% 43.9% -2.8%  40.0% 33.2% 39.5% 23.7% 34.4% 0.0% -0.4% 17.4% -0.7% 0.0% 16.2% 

STOP sign   0.8% 37.8% 5.0%  40.0% 33.2% 39.5% 23.7% 34.4% 0.0% 0.3% 14.9% 1.2% 0.0% 16.4% 
Crossbuck only   -1.6% 45.0% 7.1%  40.0% 33.2% 39.5% 23.7% 34.4% 0.0% -0.5% 17.8% 1.7% 0.0% 18.9% 
Other control   -1.4% 39.3% 1.0%  40.0% 33.2% 39.5% 23.7% 34.4% 0.0% -0.5% 15.5% 0.2% 0.0% 15.3% 

No control   -2.9% 35.9%   40.0% 33.2% 39.5% 23.7% 34.4% 0.0% -1.0% 14.2% 0.0% 0.0% 13.2% 
Gates + Flashing L.+ Audible - Base                 0.0% 

Advanced Warning Time 
 Passive crossing       40.0% 33.2% 39.5% 23.7% 34.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Warning time (>60 seconds)       40.0% 33.2% 39.5% 23.7% 34.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Warning time (<20 seconds) 9.4%  -2.7% 25.8% -8.1% 6.5% 40.0% 33.2% 39.5% 23.7% 34.4% 0.0% -0.9% 10.2% -1.9% 2.2% 19.0% 

Warning time (20~60 seconds) - 
 

                0.0% 
Collision Speed 

 Train speed (Tidwell Jr and 
 

0.8% 0.0% -0.1% 0.0% 0.0% 0.0% 40.0% 33.2% 39.5% 23.7% 34.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.8% 
Vehicle speed (Tidwell Jr and 

 
0.4% 1.9% 0.6% 3.5% -5.2% 1.7% 40.0% 33.2% 39.5% 23.7% 34.4% 0.8% 0.2% 1.4% -1.2% 0.6% 2.1% 

Socio-Demographics 
 Driver Gender (Male) -5.1% 2.7% -1.9% 1.0% -2.4% -1.4% 40.0% 33.2% 39.5% 23.7% 34.4% 1.1% -0.6% 0.4% -0.6% -0.5% -5.3% 

Driver age (Year) 0.2% 0.0% 0.0% 0.0% 0.2% 0.0% 40.0% 33.2% 39.5% 23.7% 34.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 
Vehicle type (Pick-up)  -0.7% 1.5% 0.3% 1.2% 1.1% 40.0% 33.2% 39.5% 23.7% 34.4% -0.3% 0.5% 0.1% 0.3% 0.4% 1.0% 

Vehicle type (Van)    1.2% 1.7%  40.0% 33.2% 39.5% 23.7% 34.4% 0.0% 0.0% 0.5% 0.4% 0.0% 0.9% 
Vehicle type (Auto) - Base                 0.0% 

Note: Pre-crash behaviors - 1: Drove around or thru the gate; 2:  Stopped and then proceeded; 3: Did not stop; 4: Stopped on crossing (in vehicle); 
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 Table 7. Illustrative Example Integrating Changes in Crash Rates and Injury 
Severity 

 

Crossing controls Flashing lights + 
Bells  Gates + Flashing 

lights + Bells 
CMF (Elvik and Vaa 2004) 0.55 

CMFSEV 0.162 

Steps for crash injury 
distribution modification 

Number of crashes 
before 

implementation of 
gates 

Number of crashes 
reduced after 

implementation of gates 
(not-modified for injury 

severity) 

Number crashes 
reduced with 

modified injury 
severity 

distribution 
Number of Crashes 100 55 55 

PInj 36.87% 36.87% 30.90% 
Number of Injury Crashes 36.87 20.28 16.99 
Number of PDO Crashes 63.13 34.72 38.01 

Expected Number of Injury 
Crashes-After (CMF × N) × PInj × (1 – CMFSEV) 

Expected Number of PDO 
Crashes-After (CMF × N) – (CMF × N) × PInj × (1 – CMFSEV) 
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Figure 1. Conceptual Framework for Estimating Associations of Crossing Controls with 
Injury Severity 
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